سال انتشار: 1385
کد COI مقاله: ICTM02_083
زبان مقاله: فارسیمشاهده این مقاله: 4,305
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 8 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:
مشخصات نویسندگان مقاله کاهش خطای طبقه بندی مدل مخفی مارکوف در بازشناسی گفتار فارسی با بکارگیری الگوریتم ژنتیکی در روند آموزش
چکیده مقاله:
مدل مخفی مارکوف به عنوان یکی از مهمترین ابزارهای تحلیل دنباله های تصادفی با یک ساختارحالت متناهی معرفی شده است. امروزه اکثر سیستم های بازشناسی گفتار موفق مبتنی بر مدل سازی آماری، به کمک مدل مخفی مارکوف (HMM) عمل می کنند. زیرا الگوریتم های قوی و کارای بیشترین میزان شباهت، جهت یافتن پارامترهای مدل مخفی مارکوف ارائه شده اند. که با معلوم بودن ساختار مل و با استفاده از مجموعه ی دادگان آموزشی مناسب، می توانند پارامترهای مدل را با تخمین خوبی بدست آورند. اما هیچ تضمینی وجود ندارد که مدل بهینه ی بدست آمده، بهینه ی سراسری نیز باشد. از معایب دیگر این روشهای آموزش HMM، آن است که ملاک بیشترین میزان شباهت، توجهی به دقت بازشناسی سیستم نهایی ندارد. به عبارت دیگر، هر مدل بطور جداگانه و صرف نظر از وجود مدل های دیگر، به گونه ای آموزش می بیند که تا حد امکان بر نمونه های متناظر از مجموعه ی دادگان آموزشی منطبق کردد. روش کمترین خطای طبقه بندی ، یک الگوریتم تمایزی است که دقت بالاتری را نسبت به الگوریتم های بیشترین میزان شباهت نتیجه می دهد. مشکل اصلی این روش ناهموار بودن تابع تخمین نرخ خطاست. به همین دلیل استفاده از متد جستجوی گرادیان منجر به حصول بهینه محلی می گردد در این مقاله با بکارگیری الگوریتم ژنتیکی (GA) که قابلیت جستجوی بهینه ی عمومی را داراست و نیز با ایده گرفتن از روش آموزشی تمایزی MCE، در روند اموزش، پارامترهای مدل مخفی مارکوف پیوسته یک سیستم بازشناسی گفتار فارسی، طوری بدست آورده می شود که منجر به کاهش خطای طبقه بندی و در نتیجه بهبود دقت بازشناسی شود.
کلیدواژه ها:
کد مقاله/لینک ثابت به این مقاله
کد یکتای اختصاصی (COI) این مقاله در پایگاه سیویلیکا ICTM02_083 میباشد و برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:https://civilica.com/doc/21877/
نحوه استناد به مقاله:
در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:ساجدی، هدیه و ثامنی، حسین و بیگی، حمید،1385،کاهش خطای طبقه بندی مدل مخفی مارکوف در بازشناسی گفتار فارسی با بکارگیری الگوریتم ژنتیکی در روند آموزش،دومین کنفرانس بین المللی مدیریت فناوری اطلاعات و ارتباطات،تهران،https://civilica.com/doc/21877
در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1385، ساجدی، هدیه؛ حسین ثامنی و حمید بیگی)
برای بار دوم به بعد: (1385، ساجدی؛ ثامنی و بیگی)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :مدیریت اطلاعات پژوهشی
اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.
علم سنجی و رتبه بندی مقاله
مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.
مقالات پیشنهادی مرتبط
- ارایه یک الگوریتم بهینه، بر پایه الگوریتم کرم شب تاب با پارامترهای خاص، جهت انتخاب سرخوشه در شبکه های حسگر بی سیم به منظور کاهش مصرف انرژی در این شبکه ها
- انتخاب بهترین ویژگی با الگوریتم بهینه سازی ملخ در پیش بینی بیماری دیابت با استفاده از شبکه های عصبی مصنوعی
- سیستم تشخیص نفوذ فراخوانهای سیستمی مبتنی بر مدل مخفی مارکوف
- توزیع اقتصادی بار با استفاده از الگوریتم بهینه سازی نهنگ
- ارایه یک روش جدید با ترکیب الگوریتم کرم شبتاب و روش رگرسیون بردار پشتیبان در تشخیص بیماری دیابت
مقالات فوق بر اساس داده کاوی مقالات مطالعه شده توسط پژوهشگران محاسبه شده است.
مقالات مرتبط جدید
- حل مسئله برنامه ریزی خطی کروی فازی
- تشخیص گریه نوزاد از سایر صداهای محیط با استفاده از یادگیری عمیق
- گامی فراتر در پیشگویی پیوند: یک مرور سیستماتیک بر پیشگویی پیوند چندلایه
- بهبود ترافیک شهری در شبکه های بین خودرویی با استفاده از رویکرد پروتکل وضعیت-اتصال و شبکه های عصبی
- تابعی اکتشافی برای بهبود دقت پیش بینی برنامه های جهش یافته آشکار کننده خطا
مقالات فوق اخیرا در حوزه مرتبط با این مقاله به سیویلیکا افزوده شده اند.
به اشتراک گذاری این صفحه
اطلاعات بیشتر درباره COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.