ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
ناشر تخصصی کنفرانسهای ایران
ورود |عضویت رایگان |راهنمای سایت |عضویت کتابخانه ها
عنوان
مقاله

تشخیص بیماری دیابت با استفاده از تکنیک داده کاوی و شبکه عصبی

سال انتشار: 1397
کد COI مقاله: ECICONFE02_028
زبان مقاله: فارسیمشاهده این مقاله: 1,303
فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 19 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله تشخیص بیماری دیابت با استفاده از تکنیک داده کاوی و شبکه عصبی

زهرا کیانی معین - کارشناسی ارشد رشته مهندسی کامپیوتر نرم افزار- دانشکده فنی و مهندسی- دانشگاه آزاد خرم آباد

چکیده مقاله:

استخراج اطلاعات و کشف الگوهای پنهان از پایگاه داده های تا اندازه بسیار بزرگ داده کاوی نامیده می شود. الگوها و اطلاعات معمولا به شکل پنهانی در داده ها نهفته هستند و به سادگی خود را نشان می دهد. استخراج این داده ها یکی از کاربردهای اصلی داده کاوی است. روش کشف الگوهای پنهان که تاثیر مهمی در کشف و تشخیص بیماری ها دارد به طور معمول به کمک داده کاوی امکان پذیر است. در داده کاوی حجم زیادی از اطلاعات بیماران بررسی می شود و الگوهای مفید و پنهان آن کشف می شود. تشخیص به موقع بیماری دیابت یکی از روش های کنترل و درمان آن محسوب می شود. در این مقاله با استفاده از تکنیک داده کاوی و به کارگیری یک روش ابتکاری شامل ترکیب شبکه عصبی با الگوریتم هوش دسته جمعی ذرات، یک سیستم دقیق برای تشخیص بیماری دیابت ارایه می شود. یکی از ویژگی های مهم روش پیشنهادی استفاده از مجموعه داده استاندارد Pima پس آنچه شبکه عصبی و تشخیص بیماری دیابت است. در این روش همراه با آموزش شبکه عصبی از الگوریتم هوش دسته جمعی ذرات جهت تعیین بهینه تر اوزان شبکه عصبی استفاده می شود تا یک مدل پیش بینی بیماری دیابت دقیق ساخته شود. روش پیشنهادی پس معیار دقت، ویژگی و حساسیت با سه تکنیک معتبر تشخیص بیماری دیابت شامل رگرسیون، شبکه عصبی مصنوعی و درخت تصمیم گیری مورد ارزیابی قرار می گیرد و همان طور که نتایج شبیه سازی نشان می دهد و هر سه معیار عملکرد بهتری دارد و تا حدود خیلی زیادی منطبق بر مدل واقعی می باشد. به طوری که بیشترین مقدار دقت، ویژگی و حساسیت در روش پیشنهادی با تعداد 50 آزمایش مختلف به ترتیب 94.1% ، 92.88% و 92.12 می باشد.

کلیدواژه ها:

کد مقاله/لینک ثابت به این مقاله

کد یکتای اختصاصی (COI) این مقاله در پایگاه سیویلیکا ECICONFE02_028 میباشد و برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/766408/

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
کیانی معین، زهرا،1397،تشخیص بیماری دیابت با استفاده از تکنیک داده کاوی و شبکه عصبی،دومین همایش بین المللی مهندسی برق،علوم کامپیوتر و فناوری اطلاعات،همدان،https://civilica.com/doc/766408

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1397، کیانی معین، زهرا؛ )
برای بار دوم به بعد: (1397، کیانی معین؛ )
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مدیریت اطلاعات پژوهشی

صدور گواهی نمایه سازی | گزارش اشکال مقاله | من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

نظرات خوانندگان

4.00
1 تعداد پژوهشگران نظر دهنده
5 0
4 1
3 0
2 0
1 0

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز: دانشگاه آزاد
تعداد مقالات: 2,804
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مقالات پیشنهادی مرتبط

مقالات مرتبط جدید

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

پشتیبانی