عقیده کاوی در نقد کالا با استفاده از شبکه واژگان احساسی
محل انتشار: دومین کنفرانس ملی مهندسی صنایع و سیستم ها
سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 3,509
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NIESC02_082
تاریخ نمایه سازی: 27 اردیبهشت 1393
چکیده مقاله:
امروزه با گسترش شبکه جهانی وب، افراد برای خرید کالاهای مورد نیاز خود و یا آگاهی از موضوعات مختلف به وب مراجعه مینمایند.تعداد زیادی از بلاگها و شبکههای اجتماعی وجود دارند که کاربران نظرات خود را در مورد موضوعات مختلف در آنها درج نمودهاند. درنتیجه حجم زیادی از اطلاعات به صورت غیر ساخت یافته وجود دارد که استخراج اطلاعات دلخواه از آنها کار دشواری است. عقیده کاویفرآیند تحلیل نظرات، عقاید و احساسات کاربران است که از نقدها و نظراتی که در مورد یک موضوع خاص نوشتهاند استخراج میشود. در این مقاله، یک سیستم عقیده کاوی که از تکنیکهای پردازش زبان طبیعی و شبکه واژگان احساسی برای عقیدهکاوی در مجموعهای از نقدهای کالا استفاده مینماید، بررسی شده است. در این سیستم ابتدا در مرحله پیش پردازش دادهها با جداسازی کلمات و جملات،برچسبگذاری اجزای سخن و ریشهیابی کلمات، اطلاعات مورد نیاز از نقدها استخراج میشود. در مرحله بعد با استخراج ویژگیهای کالا از نقدها، آن دسته از ویژگیها که از نظر کاربران اهمیت بیشتری دارند مشخص میشوند. ویژگیهای به دست آمده با دقت بالایی مشابه با ویژگیهای واقعی کالا میباشند. سپس طبقه بندی احساسی مجموعه داده بر اساس بار احساسی واژگان موجود در متن صورت میپذیرد
کلیدواژه ها:
نویسندگان
سمیه برهانی زرندی
بخش مهندسی کامپیوتر،دانشگاه شهید باهنر،کرمان؛
علی اکبر نیک نفس
بخش مهندسی کامپیوتر،دانشگاه شهید باهنر،کرمان؛
مجید محمدی
بخش مهندسی کامپیوتر،دانشگاه شهید باهنر،کرمان؛
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :