مقایسه عملکرد مدل های کلاسیک و هوش مصنوعی در پیش بینی وضعیت اعتباری مشتریان بانک
سال انتشار: 1397
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 509
فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_BAR-10-20_003
تاریخ نمایه سازی: 5 شهریور 1398
چکیده مقاله:
در حال حاضر در نظام بانکداری، عدم بازپرداخت تسهیلات به یکی از بزرگ ترین مسائل تبدیل شده است و به دلیل عدم وجود یک سیستم مناسب برای تخصیص تسهیلات، بانک ها و موسسات مالی دچار مشکلات عدیده ای ازجمله افزایش حجم مطالبات معوق شده اند. نظر به اهمیت ریسک اعتباری، بانک های تجاری در سطح دنیا درگذشته اغلب از روش قضاوتی برای تعیین ریسک استفاده می نمودند، لکن استفاده از این روش ها با توجه به توان محدود انسان ها در تحلیل هم زمان فاکتورهای مختلف موثر بر ریسک اعتباری در مقایسه با روش های آماری و هم چنین روش های هوش مصنوعی از کارایی کمتری برخوردار است. به همین منظور این تحقیق درصدد است تا کارایی مدل رگرسیون لجستیک و شبکه عصبی مصنوعی را در تشخیص وضعیت اعتباری مشتریان بانک در فاصله زمانی سال 1388-1392 بسنجد. بررسی نتایج نشان داد که دقت کل مدل شبکه عصبی در داده های آموزش 87% و رگرسیون لجستیک 2/77% تعیین شده است و خطای نوع اول و دوم در شبکه عصبی به میزان قابل ملاحظه ای نسبت به روش دیگر کاهش یافته است. با توجه به نتایج نمی توان انتظار داشت مدل های آماری با مفروضات کلاسیک نظیر خطی بودن روابط متغیرها، بتوانند ریسک اعتباری مشتریان را به درستی ارزیابی نماید؛ از این رو بکارگیری یا تلفیق تکنیک های هوش مصنوعی در این مساله ضرورتا توصیه می شود.
کلیدواژه ها:
نویسندگان
نرجس قاسم نیا عربی
کارشناسی ارشد گروه مدیریت صنعتی، دانشکده علوم اقتصادی و اداری، دانشگاه مازندران
عبدالحمید صفایی قادیکلایی
استاد گروه مدیریت صنعتی،دانشکده علوم اقتصادی و اداری، دانشگاه مازندران
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :