Improving Persian Sentiment Analysis Using Opposing Polarity Phrases
محل انتشار: چهارمین کنفرانس بین المللی وب پژوهی
سال انتشار: 1397
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 852
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IRANWEB04_016
تاریخ نمایه سازی: 24 شهریور 1397
چکیده مقاله:
The increasing growth of Web has given people the ability to simply express their opinion and know others’ opinion. Mining viewpoints and opinion or sentiment analysis is considered as a subfield of text mining and its main goal is to find writer’s opinion about a topic. Meeting this goal is not a simple task since emotions in a sentence or a phrase are usually recognized by combining emotions of its words. In this paper, we concentrate on bipolar terms which are those phrases containing at least one positive and one negative word. In order to consider bipolar terms, phrases with opposing polarity are first extracted from PerSent dataset then, based on the words of these phrases and their polarity in the sentence the final score is computed. Then, the score of each sentence is calculated using CNRC lexicon and maximum of absolute values, difference, and average methods with and without considering bipolar terms. The results of implementation of the proposed method show that employing bipolar terms improves the lexicon-based approach for both polarity detection and score prediction problems
کلیدواژه ها:
نویسندگان
Batoul Botshekanan Dehkordi
Master Student of Artificial Intelligence, Safahan Institute of Higher Education, Isfahan, Iran
Mohammad Ehsan Basiri
Assistant Professor of Computer Engineering, Shahrekord University, Shahrekord Iran