Non-dominated Sorting Genetic Filter A Multi-objective Evolutionary Particle Filter
محل انتشار: دوازدهمین کنفرانس ملی سیستم های هوشمند ایران
سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,009
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICS12_245
تاریخ نمایه سازی: 11 مرداد 1393
چکیده مقاله:
In this paper, the problem of nonlinear state estimation converted to a multi-objective optimization problem, and based on Non-dominated Genetic Algorithm II (NSGA-II)and Particle Filter (PF), a multi-objective evolutionary particle filter, namely Non-dominated Genetic Filter (NSGF) is proposed. Search and optimization abilities of NSGA-II are incorporated into standard particle filtering framework to improve the estimation performance. Classic filtering approaches define asingle criterion to evaluate an estimated state vector, however in this paper, two criteria are defined to evaluate and rate estimatedstate vectors. Conversion of the state estimation problem into a multi-objective optimization problem, improves diversity ofpromising solutions, and finally improves the estimation performance. Simulation results are given for an example and NSGF is compared to other types of particle filters. Efficiency and applicability of NSGF is confirmed according to the obtained results.
کلیدواژه ها:
Particle Filter ، Multiobjective Optimization ، Nondominated Sorting Genetic Algorithm II ، Evolutionary Filtering ، Nonlinear Filtering ، State Estimation
نویسندگان
S. Mostapha Kalami Heris
Control Engineering Department, Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran
Hamid Khaloozadeh
Control Engineering Department, Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran