Analysis and Prediction Hormonal Effects of Metformin on PCOS in Mice using Machine Learning algorithms
سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 145
نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IBIS12_092
تاریخ نمایه سازی: 12 آبان 1403
چکیده مقاله:
polycystic ovarian syndrome (PCOS) forecasting is a useful tool for increasing woman’sawareness of their reproductive health. This illness is the most common endocrine disease in women ofreproductive age [۱]. In this study, machine learning algorithms are used to predict the PCOS. The siximportant classification models are applied to forecast PCOS model in mice. Considering the positiveeffects of metformin as a blood sugar-lowering and sex hormone-regulating drug that can improve thephysiological and histological activity of the ovary [۲]. the present study aims to investigate and predictthe therapeutic effect of metformin on important hormonal parameters and changes The amount ofblood sugar is to improve polycystic ovary syndrome with the help of machine learning [۳]. Modelswere compared and evaluated using statistical measures such as Accuracy, Balanced Accuracy, AUCROCCurve, and F۱ Score. Based on these evaluations, the best model was selected. kNN is thought tobe the best model for forecasting PCOS. The results demonstrate that In comparison to the patient group,all the studied parameters in PCOS improved following metformin treatment and theKneighborsclassifier’s Accuracy, Balanced Accuracy, AUC-ROC Curve, and F۱ Score are ۱.
کلیدواژه ها:
نویسندگان
Mehri Mirhosseini
Department of Nursing (School of Nursing and Midwifery Amol) Mazandaran University of Medical SciencesAmol, Iran
Mohammad Taghi Ghorbanian
Department of Biology Damghan University Damghan, Iran
Karim Mostafapour
Department of Biology, University of Guilan, Guilan, Iran