A new machine vision and machine learning based approach for soil texture classification
محل انتشار: پانزدهمین کنگره ملی و اولین کنگره بین المللی مهندسی مکانیک بیوسیستم و مکانیزاسیون کشاورزی
سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 146
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NCAMEM15_092
تاریخ نمایه سازی: 16 آبان 1402
چکیده مقاله:
Predicting soil texture in tillage operations is a crucial step to guarantee proper seedbed preparation. Doing so would help producer to increase the yield and quality of products. The traditional soil texture techniques are laborious, cost and energy intensive, time-consuming, and largely depend on the operator’s experiences. Hence, there is a need to design a rapid, non-invasive and on-site measurement method for the prediction of soil texture classes. In this context, this research study proposes a computer vision-based system to accelerate the prediction of soil texture. To this end, an imaging box was designed to capture soil images. The acquired images were preprocessed to reduce the errors in the classification process. The efficient features (EFs) were extracted from soil images to accurately predict soil texture types using a feature reduction technique. Artificial Neural Networks (ANN) and Support Vector Machine (SVM) were applied to classify soil images. The experimental results indicated the superiority of the EF-SVM over the EF-ANN model with the accuracy rate of ۹۸.۹۹%. As a result, the EF-SVM model was effective in predicting soil texture classes
کلیدواژه ها:
نویسندگان
Rahim Azadnia
Department of Agricultural Machinery Engineering, Faculty of Agriculture, University of Tehran, Iran
Soleiman Hosseinpour
Department of Agricultural Machinery Engineering, Faculty of Agriculture, University of Tehran, Iran