شناسایی عیوب ظاهری جوش با استفاده از بینایی ماشین براساس یادگیری عمیق
محل انتشار: فصلنامه مهندسی عمران فردوسی، دوره: 35، شماره: 4
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 286
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CIVIL-35-4_005
تاریخ نمایه سازی: 9 اسفند 1401
چکیده مقاله:
یکی از کنترلهای کیفیت جوش، کنترل عیوب ظاهری جوش مانند ترک سطحی، جرقه و پاشش، سر رفتن جوش بر روی فلز و ذوب ناقص است. در حال حاضر بر اساس ضوابط آیین نامه ها، کیفیت ظاهری جوش توسط یک بازرس به صورت چشمی (تست چشمی) کنترل می شود. میزان دقت کار در این روش به میزان مهارت شخص بازرس بستگی دارد. عدم استفاده از تجهیزات و فناوری باعث می شود تا خطای شناسایی عیوب ظاهری بالا باشد. در این تحقیق، روشی پیشنهاد می گردد تا به کمک تصاویر حاصل از جوش و استفاده از بینایی ماشین بر اساس یادگیری عمیق بتوان با دقت و سرعت مناسب عیوب ظاهری جوش را شناسایی کرد. در یادگیری عمیق از شبکه کونولوشنال برای استخراج ویژگی از تصویر استفاده می شود. برای اطمینان از دقت روش پیشنهادی، تصاویر جدیدی از جوش معیوب که قبلا وضعیت آنها توسط بازرسان مجرب تعیین شده بود انتخاب گردید و وضعیت سلامت آنها به کمک ماشین مورد ارزیابی قرار گرفت. نتایج نشان می دهد روش پیشنهادی می تواند با دقت قابل قبول (بالای ۸۵ درصد)، عیوب ظاهری جوش را شناسایی کند. همچنین نتایج نشان می دهد، با استفاده از روش پیشنهادی، عیوب ظاهری جوش در مقایسه با روش سنتی با سرعت بیشتری مورد ارزیابی قرار می گیرد.
کلیدواژه ها:
نویسندگان
موسی محمودی صاحبی
دانشکده مهندسی عمران، دانشگاه تربیت دبیر شهید رجایی
سروش قادری
دانشکده مهندسی عمران، دانشگاه تربیت دبیر شهید رجایی.
فائزه محمودی صاحبی
دانشگاه آزاد تهران غرب
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :