ارزیابی مدل های شبکه عصبی و درخت تصمیم برای تشخیص مناطق ابری در تصاویر ماهواره نوآ بر روی گسترده ایران
محل انتشار: نشریه سنجش از دور و GIS ایران، دوره: 1، شماره: 4
سال انتشار: 1388
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 389
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_GIS-1-4_002
تاریخ نمایه سازی: 16 آبان 1400
چکیده مقاله:
برای مطالعه سطح زمین با تصاویر ماهواره ای، طبقه بندی و تشیخص درست پیکسل های ابری امری ضروری به شمار می آید. از میان روش های طبقه بندی موجود می توان به مدل های شبکه عصبی و درخت تصمیم در داده کاوی اشاره کرد که الگوریتم های متعددی از این دو دسته مدل، شکل گرفته و توسعه یافته اند، به منظور ارزیابی دقت این مدل ها در طبقه بندی و انتخاب بهترین آن ها، یاده الگوریتم از این دو دسته مدل ارزیابی شدند. بدین منظور با انتخاب ۴۰۰۰۰ پیکسل با ویژگی های مناطق ابری، صاف، برفی و آب در چهار کلاس از تصاویر کالیبره شده ماهواره نوآ بر روی گستره ایران در فصول مختلف سال و با استخراج اطلاعات پنج باند نوآ محاسبه نسبت های باندی NDVI، نسبت بازتابندنگی باند یک باز تابندگی باند دو و اختلاف دمای درخشندگی باند پنج با دمای درخشتندگی باند چهار و معرفی آن ها به عنوان متغیرهای ورودی، دقت هر یک از الگوریتم ها در طبقه بندی این کلاس ها مقایسه شد. زمان اجرای سریع الگوریتم های درخت تصمیم در مقایسه با اجرای کندتر الگوریتم های شبکه عصبی ماتریس تطابق که تعداد درستی و خطا در طبقه بندی پیکسل هانشان می دهد، مشخص شد که در بین یازده الگوریتم مورد مقایسه، اگلوریتم درخت تصمیم C۵، با ۴۳ مورد خطا در تشخیص پیکسل های ابری، با دقتی معادل ۵۶/۹۹ درصد دارای بهترین دقت در طبقه بندی است. نیز با توجه به مزایای ذکر شده برای این دسته مدل های طبقه بندی، C۵ مناسب ترین الگوریتم برای طبقه بندی پیکسل های ماهواره ای و تشخیص های ابری شناخته شد.
کلیدواژه ها:
نویسندگان
خلیل قربانی
دانشگاه تهران
علی خلیلی
دانشگاه تهران
سیدکاظم علوی پناه
دانشگاه تهران
غلامرضا نخعی زاده
دانشگاه کلسروهه آلمان