ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
CIVILICAWe Respect the Science
ناشر تخصصی کنفرانسهای ایران
عنوان
مقاله

Probabilistic Damage Detection Using Bayesian Updating of Dynamic Parameters

سال انتشار: 1398
کد COI مقاله: ISAV09_130
زبان مقاله: انگلیسیمشاهد این مقاله: 201
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 8 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله Probabilistic Damage Detection Using Bayesian Updating of Dynamic Parameters

Zahra Zhiyanpour - M.Sc. Student, Department of civil engineering, Sharif University of Technology, Tehran, Iran.
Ali Bakhshi - Associate Professor, Department of civil engineering, Sharif University of Technology, Tehran, Iran.
Mohammad Rahai - Formerly M.Sc. Student, Department of civil engineering, Sharif University of Technology, Tehran, Iran.

چکیده مقاله:

This paper focuses on an application of Bayes inference rule to evaluate the probability of damage in structures, using measured modal parameters and a set of possible damage states. For different combinations of the damageparameters and realizations of the random vari-ables, the modal parameters are calculated solving the basic eigenvalue problem in regards to associated uncertainties in density and elasticity. The results are used to calculate the stati-tics of the parameters given a specific damage state, the likelihood functions, as these are needed to calculate the probability of a given a set of measurements given a damage state. This paper discusses the effectiveness of the approach in identifying a particular damage state referred to as damage scenario. The discussion also considers the effect of error in the meas-urements, and the number of repeated measurements that are required to achieve a substantial confidence as to the presence of a particular damage state. Ranking of the estimated prob-abilities, after a set of measurements, offers guidance to the engineer as when and where to conduct a direct inspection of the structure.

کلیدواژه ها:

Probabilistic Damage Detection; Damage States; Multivariate Likelihood Func-tion; Bayesian Updating.

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/976178/

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Zhiyanpour, Zahra and Bakhshi, Ali and Rahai, Mohammad,1398,Probabilistic Damage Detection Using Bayesian Updating of Dynamic Parameters,نهمین کنفرانس بین المللی آکوستیک و ارتعاشات,تهران,,,https://civilica.com/doc/976178

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1398, Zhiyanpour, Zahra؛ Ali Bakhshi and Mohammad Rahai)
برای بار دوم به بعد: (1398, Zhiyanpour؛ Bakhshi and Rahai)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مدیریت اطلاعات پژوهشی

صدور گواهی نمایه سازی | گزارش اشکال مقاله | من نویسنده این مقاله هستم

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز: دانشگاه دولتی
تعداد مقالات: 13,602
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مقالات پیشنهادی مرتبط

مقالات مرتبط جدید

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

پشتیبانی