Diagnosis of Breast Cancer using a Combination of Genetic Algorithm and Artificial Neural Network in Medical Infrared Thermal Imaging
محل انتشار: مجله فیزیک پزشکی ایران، دوره: 9، شماره: 4
سال انتشار: 1391
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 458
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMP-9-4_006
تاریخ نمایه سازی: 20 مهر 1398
چکیده مقاله:
Introduction This study is an effort to diagnose breast cancer by processing the quantitative and qualitative information obtained from medical infrared imaging. The medical infrared imaging is free from any harmful radiation and it is one of the best advantages of the proposed method. By analyzing this information, the best diagnostic parameters among the available parameters are selected and its sensitivity and precision in cancer diagnosis is improved by utilizing genetic algorithm and artificial neural network. Materials and Methods In this research, the necessary information is obtained from thermal imaging of 200 people, and 8 diagnostic parameters are extracted from these images by the research team. Then these 8 parameters are used as input of our proposed combinatorial model which is formed using artificial neural network and genetic algorithm. Results Our results have revealed that comparison of the breast areas; thermal pattern and kurtosis are the most important parameters in breast cancer diagnosis from proposed medical infrared imaging. The proposed combinatorial model with a 50% sensitivity, 75% specificity and, 70% accuracy shows good precision in cancer diagnosis. Conclusion The main goal of this article is to describe the capability of infrared imaging in preliminary diagnosis of breast cancer. This method is beneficial to patients with and without symptoms. The results indicate that the proposed combinatorial model produces optimum and efficacious parameters in comparison to other parameters and can improve the capability and power of globalizing the artificial neural network. This will help physicians in more accurate diagnosis of this type of cancer.
کلیدواژه ها:
نویسندگان
Hossein Ghayoumi zadeh
Biomedical Engineering Department , Hakim Sabzevari University, Sbzevar, Iran
Javad Haddadnia
Biomedical Engineering Department, Hakim Sabzevari University, Center for Research of Advanced Medical Technologies, Sabzevar University of Medical Sciences, Sbzevar, Iran
Maryam Hashemian
School of Medicine, Sabzevar University of Medical Sciences
Kazem Hassanpour
School of Medicine, Sabzevar University of Medical Sciences
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :