Cardiac Arrhythmia Classification Using Neural Networks and a Fuzzy Combination of Wavelet Transforms mid Autoregressive Modeling
محل انتشار: سومین کنفرانس سیستم های تصمیم گیری هوشمند
سال انتشار: 1397
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 640
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IDS03_020
تاریخ نمایه سازی: 31 اردیبهشت 1398
چکیده مقاله:
This paper presents a new approach of feature extraction for reliable heart arrhythmia detection. This classification method is comprised of three components including data collection, feature extraction and classification of Electrocardiogram (ECG) signals. The new proposed feature extraction method is a fuzzy combination of three types of wavelet transforms (WT) together with the 4th order Autoregressive (AR) model coefficients to obtain the feature vector of ECG data. Then the multilayer perceptron neural network (MLP) is used to classify different ECG signals with different kinds of arrhythmias. In this paper, four types of heartbeats are classified: Normal beats, AF beat, VT beats and PSVT beats. Computer simulations are provided to verify the performance of the proposed method. The accuracy of ECG signals classification by using WT coefficients, WT coefficients together with 4th order AR model coefficients, and fuzzy combination of three kinds of WT coefficients together with 4th order AR model coefficients was obtained 86.7%, 91.3% and 94.2%, respectively.
کلیدواژه ها:
نویسندگان
Gelayol Nazari Golpayegani
Department of Electrical Engineering, Yadegar-e-Emam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran