ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
ناشر تخصصی کنفرانسهای ایران
ورود |عضویت رایگان |راهنمای سایت |عضویت کتابخانه ها
عنوان
مقاله

طبقه بندی تصاویر ترموگرافی برای تشخیص سرطان سینه بر اساس استخراج ویژگی ها، الگوهای محلی باینری و کاربرد شبکه های عصبی، ماشین بردار پشتیبان و نزدیکترین همسایگی

سال انتشار: 1397
کد COI مقاله: ICELE03_529
زبان مقاله: فارسیمشاهده این مقاله: 433
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 6 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله طبقه بندی تصاویر ترموگرافی برای تشخیص سرطان سینه بر اساس استخراج ویژگی ها، الگوهای محلی باینری و کاربرد شبکه های عصبی، ماشین بردار پشتیبان و نزدیکترین همسایگی

افسون نادری - دانشکده مهندسی برق، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران

چکیده مقاله:

امروزه سرطان سینه یکی از رایج ترین انواع سرطان ها در میان زنان است که بیشترین آمار مرگ و میر زنانبه دلیل سرطان را به خود اختصاص می دهد. تشخیص زود هنگام این سرطان می تواند جان بسیاری را نجاتدهد. روش های بسیاری برای تصویربرداری سرطان سینه در مرحله تشخیصی وجود دارد. ترموگرافی یکی ازاین روش هاست که به وسیله ی یک دوربین مادون قرمز به ثبت دمای ناحیه مورد نظر می پردازد. این روشکاملا بی خطر بوده و نسبت به سایر روش های تصویربرداری سرطان سینه، مقرون به صرفه تر است. مطالعات وتحقیقات متنوعی بر روی تصاویر ترموگرافی سرطان سینه و استخراج ویژگی ها انجام شده است. برایپردازش این تصاویر، باید ابتدا تصاویر را به سطوح خاکستری تبدیل کرده و سپس از روی آن ها به استخراجویژگی ها پرداخت. استخراج ویژگی های آماری مانند میانگین، انحراف معیار ، آنتروپی و ... از روی سیگنالدمایی حاصل شده از تصاویر امکان پذیر است و با استفاده از شبکه ی عصبی به عنوان طبقه بند، دقت 60%حاصل می شود که نتیجه ی مطلوبی نیست. بنابراین باید از سایر روش ها برای استخراج ویژگی ها مانند الگویباینری محلی استفاده کرد که در این صورت نتایج حاصل از این ویژگی ها در طبقه بندهای مختلف از جملهشبکه عصبی و ماشین بردار پشتیبان، با دقت 100 % بدست می آید.

کلیدواژه ها:

کد مقاله/لینک ثابت به این مقاله

کد یکتای اختصاصی (COI) این مقاله در پایگاه سیویلیکا ICELE03_529 میباشد و برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/832019/

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
نادری، افسون،1397،طبقه بندی تصاویر ترموگرافی برای تشخیص سرطان سینه بر اساس استخراج ویژگی ها، الگوهای محلی باینری و کاربرد شبکه های عصبی، ماشین بردار پشتیبان و نزدیکترین همسایگی،سومین کنفرانس بین المللی مهندسی برق،تهران،https://civilica.com/doc/832019

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1397، نادری، افسون؛ )
برای بار دوم به بعد: (1397، نادری؛ )
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مدیریت اطلاعات پژوهشی

صدور گواهی نمایه سازی | گزارش اشکال مقاله | من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز: دانشگاه آزاد
تعداد مقالات: 9,852
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مقالات پیشنهادی مرتبط

مقالات مرتبط جدید

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

پشتیبانی