مقایسه طبقه بندی داده های نامتوازن توسط الگوریتم ماشین بردار پشتیبانی با الگوریتم شبکه عصبی
محل انتشار: کنفرانس بین المللی تحقیقات بین رشته ای در مهندسی برق، کامپیوتر، مکانیک و مکاترونیک در ایران و جهان اسلام
سال انتشار: 1397
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 801
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ECMM01_082
تاریخ نمایه سازی: 23 آذر 1397
چکیده مقاله:
به طور کلی هدف داده کاوی، یادگیری و آموختن از داده ها است. داده کاوی با بهره گیری از ابزارهای تجزیه و تحلیل داده ها به منظور کشف الگوها و روابط معتبری که تاکنون ناشناخته بوده اند به طبقه بندی داده ها می پردازد. این ابزارها ممکن است مدل های آماری، الگوریتم های ریاضی و روش های یاد گیرنده باشند که این کار خود را به صورت خودکار و بر اساس تجربه ای که از طریق شبکه های عصبی یا ماشین برداری پشتیبان به دست می آورند بهبود می بخشد. با توجه به اینکه داده های کنونی از حالت ساختاریافته و متوازن به سمت غیرساختاری و نامتوازن می روند و حجم این مدل مجموعه داده ها در دنیای واقعی چشمگیرتر شده است. ماشین بردار پشتیبانی تعمیم خوبی برای داده های نامتوازن و همچنین توانایی یادگیری یک رابطه غیر خطی بین داده ها و متغیر هدف است و در مقایسه با روشی مانند شبکه عصبی ساده تر، دقت و سرعت اجرایی بالاتر و خطای پایین تری دارد. در این مقاله به شبیه سازی بر روی مجموعه داده واقعی نامتوازن برگرفته از پایگاه داده UCI می پردازیم و نتایج را در دو روش SVM و شبکه عصبی با توجه به سه معیار ارزیابی صحت، خطا و زمان اجرای الگوریتم مقایسه می کنیم تا ثابت کنیم یکی از پرکابردترین روش های کلاسیک طبقه بندی داده ها در داده کاوی برای داده های واقعی نامتوازن نمی تواند جواب دقیقی بدهد و باید از روش های نوین مانند ماشین بردار پشتیبان برای اینگونه داده ها استفاده کرد.
کلیدواژه ها:
نویسندگان
مریم عمادالدین
دانشجوی کارشناسی ارشد مهندسی کامپیوتر، موسسه آموزش عالی غیرانتفاعی آبا
نسرین بدیع
استاد دانشگاه آزاد اسلامی واحد تهران جنوب
حمید خفاجه
هیات علمی موسسه آموزش عالی غیر انتغاعی آبا