A Coupled Artificial Neural Network-Genetic Algorithm (ANN-GA) Based Approach to Process Modeling and Optimization of Electrical Discharge Machining (EDM) Parameters

سال انتشار: 1388
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,682

فایل این مقاله در 22 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICME10_009

تاریخ نمایه سازی: 29 آبان 1388

چکیده مقاله:

In the present study, a unified coupled artificial neural network-genetic algorithm (ANNGA) based methodology is proposed for the modeling and optimal selection of process parameters involved in electrical discharge machining (EDM) process. Firstly, based onthe prior knowledge of the physics of process mechanism as well as the EDM machine characteristics, the controllable input variables were identified as the discharge current (I),pulse on-time (Ton) and pulse off-time (Toff). Having conducted a set of preliminary and screening experiments to specify the stable working domains of these inputs, a 43 full factorial design scheme was employed to plan the training experiments of the backpropagation neural network model. The experiments were done in the planing mode with both flat tool and work piece electrodes having equal diameters. Heat treated CK45 carbon steel up to 60 RC and commercial cupper were used as work piece and tool materials, respectively. Material removal rate (MRR) and surface roughness (Ra) were chosen as the response outputs. There-upon, a 3-8-6-2 size feed forward back propagation neural network was developed to establish the process model. Testing the generalization capabilities of the model by a set of new data not being used in the training phase, the second stage begins by combining the genetic algorithm technique with the neural model to find optimum machining conditions leading to the highest possible MRR.The multi-objective optimization problem was categorized as finishing (Ra ≤ 4μm), semifinishing (Ra ≤ 8μm), and roughing (Ra ≤ 12μm) regimes, from which a group of optimal input parameters were obtained in each case, satisfying the Ra constraint and yielding the maximum MRR, simultaneously. Finally, the modeling and traded-off selected optimal results were also interpreted and verified experimentally to validate the adopted approach. The observed errors are all in acceptable ranges (less than 10%) which show a good agreement with simulation results and confirm the feasibility and effectiveness of the implemented strategy.

کلیدواژه ها:

Electrical Discharge Machining (EDM) ، Back propagation neural network (BPNN) ، Genetic algorithm (GA) ، Process modeling ، Optimization

نویسندگان

S Assarzadeh

Ph.D. Student, Specific Machinings Laboratory (S.M.L.), Department of Mechanical Engineering, K.N. Toosi University of Technology, P.O. Box: ۱۹۳۹۵-۱۹۹۹, Tehran, Iran,

M Shamsi

B.Sc. Graduate, Mashhad Technical College, P.O. Box: ۹۱۷۳۵-۱۷۱, Mashhad, Iran

M Ghoreishi

Associate Professor, Department of Mechanical Engineering, K. N. Toosi University of Technology,P.O. Box: ۱۹۳۹۵-۱۹۹۹, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Schumacher B. M., After 60 years of EDDM the discharge ...
  • Pandit S. M., Rajurkar K. P., A stochastic approach to ...
  • o" ranian Conference on Manufacturing Engineering ICME 2010 ...
  • Abbas N. M., Solomon D. G., Bahari Md. F., A ...
  • Ho K. H., Newman S. T., State of the art ...
  • McGeough J. A., Advanced methods of machining, Chapman and Hall, ...
  • Jain N. K., Jain V. K., Modeling of material removal ...
  • _ _ _ _ , Swansea, UK, Sep. 1980, PP. ...
  • McGeough J. A., Rasmussen H., A macroscopic model of el ...
  • Erden A., Arinc F., Kogmen M., Comparison of mathematica models ...
  • Hocheng H., Lei W. T., Hsu H. S., Preliminary study ...
  • Shankar P., Jain V. K., Sundararajan T., Analysis of spark ...
  • Singh A, Ghosh A., A thermo-el ectric model of material ...
  • Das S., Klotz M., Klocke F., EDM simulation: finite el ...
  • Dhanik S., Joshi S. S., Modeling of a single resistance ...
  • Katz Z., Tibbles C. J., Analysis of micro-scale EDM process, ...
  • Salah N. B., Ghanem F., Atig K. B., Numerical study ...
  • Marafona J., Chousal J. A. G., A finite element model ...
  • Sharakhovsky L. I, Marotta A., Essiptchouk A. M., Model of ...
  • Panda D. P., Bhoi R. K., El ectro-di scharge machining ...
  • o" ranian Conference on Manufacturing Engineering ICME 2010 ...
  • Salonitis K., Stournaras A., Stavropoulos P., Chryssolouris, Thermal modeling of ...
  • Allen P., Chen X., Process simulation of micro el ectro-d ...
  • Yeo S. H., Kurnia W., Tan P. C., El ectro-therma ...
  • Yeo S. H., Kurnia W., Tan P. C., Critical assessmet ...
  • Freeman J. A., Skapura D. M., Neural networks: algorithms, applications, ...
  • Haykin S., Neural networks: a Co mprehensive foundation, Macmillan College ...
  • Wu B., An introduction _ neural networks and their applications ...
  • Indurkhya G, Rajurkar K. P., Artificial neural network approach in ...
  • Kao J. Y., Tarng Y. S., A neural network approach ...
  • Tsai K. M., Wang P. J., Comparison of neural network ...
  • Tsai K. M., Wang P. J., Predictions _ surface finish ...
  • Wang P. J., Tsai K. M., Semi-empi rical model _ ...
  • Tsai K. M., Wang P. J., Semi-empi rical model of ...
  • Panda D. K., Bhoi R. K., Artificial neural network prediction ...
  • Ghoreishi M., Assarzadeh S., Prediction of material removal rate and ...
  • Assarzadeh S., Ghoreishi M., Neu ral _ _ etwork-based modeling ...
  • Assarzadeh S., Ghoreishi M., El ectro-d ischarge machining (EDM) process ...
  • o" ranian Conference on Manufacturing Engineering ICME 2010 ...
  • Markopoulos A. P., Manolakos D E., Vaxevanidis N. M., Artificial ...
  • Pradhan M. K., Das R., Biswas C. K., Comparisons of ...
  • Yang S.-H., Srinivas J., Mohan S., Lee D.-M., Balajl S., ...
  • Jain V. K., Advanced machining processes, Allied Publisher Pvt. Limited, ...
  • Hornik K., Stinchombe M., White H., Multlayer feed forward networks ...
  • Chester D. I, Why two hidden layers are better than ...
  • Demuth H., Beale M., Neural networks toolbox for use with ...
  • Goldberg D. E., Genetic Algorithms in Search, Optimization, and Machine ...
  • Chipperfield A, Fleming P, Pohlheim H., Fonseca C., Genetic algorithm ...
  • نمایش کامل مراجع