Prediction of Wear Behavior in Porous Sintered Steels: Artificial Neural Network Approach
محل انتشار: ششمین کنفرانس بین المللی متالورژی پودر
سال انتشار: 1397
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 504
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
PMAUTO06_115
تاریخ نمایه سازی: 23 آذر 1397
چکیده مقاله:
Delicate parts with very high dimensional accuracy can be produced through the powder metallurgy process. Powder metallurgy in comparison with other manufacturing process, provide the possibility of access to precision pieces with a significant reduction in cost. Due to the increasing usage of powder metallurgy, there is a demand to evaluate and improve the mechanical properties of this parts. One of the most important mechanical properties is wear behavior, especially in parts that are in contact with each other. The wear of a solid surface due to mechanical contact between the two surfaces is one of the most important issue in many components. Therefore, the choice of materials and select manufacturing parameters are very important to achieve proper wear behavior. So, prediction of wear resistance is important in powder metallurgy parts. In this paper, we try to investigate and predict the wear resistance (volume loss) of powder metallurgy porous steels according to the affecting factors such as: density, force and sliding distance by artificial neural network. Artificial neural network training was done by multilayer perceptron procedure. The comparison of the results estimated by the artificial neural network with the experimental data obtained from the tests that normalized on the diagram, shows their proper matching. This issue confirms the efficiency of using method for prediction of wear resistance in powder metallurgy porous steel parts.
کلیدواژه ها:
نویسندگان
Hassan Abdoos
Assistant Professor, Nanomaterials Department, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran.
Ahmad Tayebi
B. Sc. Student, Faculty of Material Science and Metallurgy, Semnan University, Semnan, Iran.
Meysam Bayat
B. Sc. Student, Faculty of Material Science and Metallurgy, Semnan University, Semnan, Iran.