انتخاب ویژگی های مؤثر در بازشناسی ارقام دستنویس فارسی با الگوریتم تکاملی ژنتیک
سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 810
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CBCONF01_0200
تاریخ نمایه سازی: 16 شهریور 1395
چکیده مقاله:
انتخاب الگوی طبقه بندی مناسب و روش مورد استفاده برای استخراج ویژگی از عوامل اصلی برای قضاوت در مورد دقت وقابلیت تشخیص سیستم های نوری میباشد. تمرکز اصلی این مقاله بر روی انتخاب ویژگی های مؤثر در بازشناسی ارقامدست نویس فارسی با استفاده از الگوریتم تکاملی ژنتیک می باشد. ویژگی ها از طریق گرادیان در هشت جهت از هر تصویراستخراج می شود. برای طبقه بندی ارقام دست نویس از شبکه عصبی پرسپترون چند لایه استفاده شده است. استفاده ازبرخی عملیات پیش پردازش مانند نازک سازی، حذف نویزهای پس زمینه و پیش زمینه ، استاندارد سازی کردن اندازهتصویر قبل از استخراج ویژگی می تواند در نتایج خروجی مفید واقع شود. نتیجه بدست آمده با استفاده از این روش بر رویپایگاه دادهی هدا برابر 98.85 درصد بوده است.
کلیدواژه ها:
استخراج ویژگی ، سیستم های نوری ، بازشناسی ارقام دست نویس ، الگوریتم ژنتیک ، گرادیان ، شبکه عصبی پرسپترون چند لایه
نویسندگان
ساناز یاسایی
دانشجوی کارشناسی ارشد هوش مصنوعی، دانشگاه هرمزگان
احمد حاتم
استادیار گروه مهندسی برق و کامپیوتر دانشگاه هرمزگان
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :