Exploring Interactional Metadiscourse in Research Articles of Social and Natural Sciences
محل انتشار: اولین کنفرانس ملی زبان انگلیسی
سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 975
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CONFBZRA01_055
تاریخ نمایه سازی: 9 مرداد 1395
چکیده مقاله:
This study investigated the distribution of interactional metadiscourse markers (IMMs) across four disciplines of English research articles (RAs), namely Applied Linguistics, Psychology (labeled soft disciplines), Chemistry and Medicine (labeled hard disciplines), in order to spot any probable differences between the Introduction (Int) and Result/Discussion (RD) sections of those RAs. At first, a total of 120 RAs were selected (30 articles for each discipline). The Int and RD sections were extracted and then were compared as to their use of IMMs using Hyland’s (2005) model.During the corpus analysis, the IMMs were manually and carefully counted by the researcher and then by a second rater. The obtained results were averaged out to yield one more reliable set of data. The frequencies obtained per 1,000 words and then the Chi-square test was run. The results of statistical analysis showed that there was no significant difference between soft and hard disciplines in the employment of IMMs throughout the whole corpus when subsections were compared. On the whole, this study suggests that IMMs are valuable rhetorical means which are believed not only to help writers to write better but also to facilitate the reading process for readers.
کلیدواژه ها:
نویسندگان
Reza Abdi
Department of English Language Teaching, Faculty of Literature and Humanities, University of Mohaghegh Ardabili, Ardabil, Iran
Maryam Rostamzadeh
Ardabil Azad University, Iran
Shahabaddin Behtary
Department of English Language Teaching,Faculty Humanities,Islamic Azad University,Ardabil Branch, Ardabil, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :