Improved Intelligent Algorithms for Solving Job-shop Scheduling Problems
محل انتشار: شانزدهمین کنفرانس مهندسی برق ایران
سال انتشار: 1387
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,067
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICEE16_053
تاریخ نمایه سازی: 6 اسفند 1386
چکیده مقاله:
Job-shop Scheduling Problem (JSP) deals with the sequencing operations of a set of jobs on a set of machines with minimum cost. JSP is one of extremely hard problems because it requires very large combinatorial search space considering the precedence constraint between machines. In this paper for solving JSP problems three new and modified intelligent methods are studied. For solving JSP problems, first Genetic Algorithm (GA) method with new crossover and mutation operators is introduced, the crossover operator is based on position of chromosome elements (Position Based Crossover) and Swap mutation is applied to GA. Then Tabu Search algorithm (TS) that is equipped with short and long term memories is presented as a second approach and modified Very Fast Simulated Annealing (VFSA) with a correction in neighbor generation is the third strategy. Finally the capabilities and Performances of the three proposed methods are adopted to prove their efficiencies based on a Job shop benchmark problem. The numerical examples show that the mentioned modified methods have better optimality performances than conventional (unmodified) methods and among them the GA with new operators is the best strategy for solving JSP problem with minimum value of cost function and simulation time.
کلیدواژه ها:
Job-shop Scheduling Problem ، Intelligent methods ، Genetic Algorithm ، Tabu Search ، Very Fast Simulated Annealing
نویسندگان
Sohrab Khanmohammadi
Control Engineering Department, Faculty of Electrical
Hamed Kharrati Shishvan
Computer Engineering University of Tabriz, Tabriz, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :