A New Hybrid Fraud Detection Approach in Credit Cards and Financial Statements

سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 797

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICEEE07_494

تاریخ نمایه سازی: 19 اردیبهشت 1395

چکیده مقاله:

This paper presents a new method for fraud detection in credit cards and financial statements. This method uses a combination of three regular methods i.e. Support Vector Machine (SVM), Neural Network and Decision Tree (DT). After training, each mentioned structure is given with samples to make appropriate labels. These labels are combined separately with three other classifiers to achieve final label which indicates the presence or absence of fraud. In addition, T-statistic feature selection is used for preprocessing as well as an approach based on Euclidean and middle distance for data balancing. To evaluate proposed method, we have benefited from two data sets of UCI database and data sets of 2nd International Artificial Intelligence and Robotic Competition which was held in 2013 at Amir Kabir University in Iran. Efficiency of the proposed method on balanced and unbalanced discussed and Mann-Whitney testshows a significant difference compared with the other methods and this approves the performance of the proposed method. Improving in performance, increasing in response speed and decreasing false alarms are the major achievements of the proposed method.

نویسندگان

M Fattahi

Department of Software Engineering, Ferdows Branch, Islamic Azad University, Ferdows, Iran

M. H. Moattar

Department of Software Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • A. Dal Pozzolo, O. Caelen, Y.-A. Le Borgne, S. Waterschoot, ...
  • V. Bolon-Canedo, I. Porto-Diaz, N. S anchez -Maroio _ and ...
  • Z. Rezaee. 2002 Financial statement fraud: prevention and detection: Wiley. ...
  • _ the number and types of independent variables and sample ...
  • Y. Yohannes and J. Hoddinott. 1999. "Classification and regression trees: ...
  • T. G. Dietterich and E. B. Kong. 1995. "Machine learning ...
  • P. J. Braspenning, F. Thuijsman, and A. J. M. M. ...
  • J. _ Anderson and J. Davis. 1995. An introduction o ...
  • J. R. Quinlan. 1993. C4. 5: programs for machine learning ...
  • Y. Sahin, S. Bulkan, and E. Duman. 2013 "A cost- ...
  • F. F. Noghani. 2015. "A Credit Cards Fraud Detection approach ...
  • J. Eng. 2005. "Receiver Operating Characteristic Analysis: A Primer1". Academic ...
  • comparative study". Decision Support Systems, vol. 50, pp. 602-613. ...
  • A. Shen, R. Tong, and Y. Deng. 2007. "Application of ...
  • S. Viaene, G. Dedene, and R. A. Derrig. 2005. "Auto ...
  • K. Zou, W. Sun, H. Yu, and F. Liu. 2012. ...
  • E. Kirkos, C. Spathis, and Y. Manolopoulos. 2007. "Data mining ...
  • C. Lin. 2006 "A new binary support vector system for ...
  • http://utcup20 _ 3 , aut. ac _ ir/index/inde .php ...
  • S. W. Kwok and . Carter. 2013. "Multiple decision tree". ...
  • Y. S. Kim. 2008 "Comparison of the decision tree, artificial ...
  • نمایش کامل مراجع