An Effective Intrusion Detection System by Using Feature Selection Methods and Machine Learning Algorithms
سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 791
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ITCC01_093
تاریخ نمایه سازی: 9 فروردین 1395
چکیده مقاله:
Today, due to high data volumes and their complexity, we need the right tool for the analysis of existing data and acquiring knowledge. The interest of attains hidden knowledge in Data mining is Data Growth. Data mining in recent years, has significant impact on the academic and industrial environments and found many applications in different fields. This paper presents an integrated approach to data mining to intrusion detection in computer networks by supervised machine learning algorithms that decision trees are the most important approaches. The results showed that there is a comparison between the performance of this algorithm and other methods Therefore, to increase efficiency and reduce the error rate of the algorithm we used adaptive boost classifier combination and reduce the size of the 15 features, the accuracy reached 96.74%, a higher percentage than previous methods.
کلیدواژه ها:
نویسندگان
Sayed Hossein Hashemi
Department of Nuclear Engineering, Science and Research Branch, Islamic Azad university, Tehran, Iran
Sayed Mohsen Hashemi
Sama Technical and Vocational Training College, Islamic Azad University, branch soosangerd, soosangerd, Iran
Aref Sayahi
Sama Technical and Vocational Training College, Islamic Azad University, branch soosangerd, soosangerd, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :