Online neural network compensator for uncertain nonlinear MIMO systems based on RISE feedback

سال انتشار: 1393
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 672

فایل این مقاله در 24 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJMEC-4-12_019

تاریخ نمایه سازی: 16 فروردین 1395

چکیده مقاله:

The paper proposes an adaptive controller to track time-varying trajectory for nonlinear MIIMO systems in presence of uncertainty and disturbances. The suggested controller employs an online adaptive Gaussian Radial Basis Function (RBF) network to estimate nonlinear functions together with Robust Integral of the Sign of the Error (RISE) control strategy. RISE term is injected in control structure in order to eliminate neural network error and external disturbances. The weight matrix and Gaussian functions update laws of adaptive RBF that are obtained of Lyapunov analysis tuned based on state error information in online manner. Hence, there are no need to choice of centers and width of Gaussian function that are essential for RBF desirable acting. The closed-loop stability is guaranteed by a Lyapunov stability analysis. Finally, simulations on two link robot manipulator illustrate the performance of the derived tracking control technique

کلیدواژه ها:

Adaptive RBF neural network ، Lyapunov analysis ، Robust Integral of the Sign of the Error (RISE) ، uncertainty

نویسندگان

Behnaz Hadi

Noshirvani University of Technology, Babol, Iran

Alireza Khosravi

Noshirvani University of Technology, Babol, Iran

Pouria Sarhadi

Noshirvani University of Technology, Babol, Iran