Building Customers’ Credit Scoring Models with Combination of Feature Selection and Decision Tree Algorithms
سال انتشار: 1393
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 584
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ACSIJ-4-2_012
تاریخ نمایه سازی: 7 آذر 1394
چکیده مقاله:
Today's financial transactions have been increased through banks and financial institutions. Therefore, credit scoring is a critical task to forecast the customers‟ credit. We have created 9 differentmodels for the credit scoring by combining three methods of feature selection and three decision tree algorithms. The modelsare implemented on three datasets and then the accuracy of the models is compared. The two datasets are chosen from the UCI(Australian dataset, German dataset) and a given dataset is considered a Car Leasing Company in Iran. Results show thatusing feature selection methods with decision tree algorithms(hybrid models) make more accurate models than models without feature selection.
کلیدواژه ها:
نویسندگان
Zahra Davoodabadi
Computer Eng. Department, Shahab-e-Danesh Institute of Higher Education, Qom, Iran
Ali Moeini
Department of Algorithms and Computations, University of Tehran, Tehran, Iran