Building Customers’ Credit Scoring Models with Combination of Feature Selection and Decision Tree Algorithms

سال انتشار: 1393
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 584

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ACSIJ-4-2_012

تاریخ نمایه سازی: 7 آذر 1394

چکیده مقاله:

Today's financial transactions have been increased through banks and financial institutions. Therefore, credit scoring is a critical task to forecast the customers‟ credit. We have created 9 differentmodels for the credit scoring by combining three methods of feature selection and three decision tree algorithms. The modelsare implemented on three datasets and then the accuracy of the models is compared. The two datasets are chosen from the UCI(Australian dataset, German dataset) and a given dataset is considered a Car Leasing Company in Iran. Results show thatusing feature selection methods with decision tree algorithms(hybrid models) make more accurate models than models without feature selection.

نویسندگان

Zahra Davoodabadi

Computer Eng. Department, Shahab-e-Danesh Institute of Higher Education, Qom, Iran

Ali Moeini

Department of Algorithms and Computations, University of Tehran, Tehran, Iran