Predict Stock Index of Tehran Exchange by a Comprehensive Perspective of Datamining

سال انتشار: 1393
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 705

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

EAMS01_634

تاریخ نمایه سازی: 19 تیر 1394

چکیده مقاله:

Stock exchange is one of the main financial sources which its main feature is continuous production of different and various financial data. Here we have presented a comprehensive datamining approach to predict stock index in Tehran exchange. Basically, stock index influences from many known and even unknown variables. Firstly, we have tried to extract the type and way of effective patterns by reviewing determining indices in main stock index fluctuations. Initially we have suggested the beneficial structure for available data. Then we used an approach based on MLP neural networks to extract the hidden knowledge. Suggested approach which is named multi-section multi-layer perceptron (MSMLP) has searched in the hidden space among data using some of MLP networks and trains to predict main index of stock and different groups’ stock index. After modeling the suggested approach, we have practically implemented it on the set of Tehran exchange data from 90.1.1 to 92.6.31, in a 30 months’ timescale. Then we have evaluated its capability to predict main index of Tehran exchange in the October 2013. Results obtained from implementation of MSMLP architecture indicated the 36.6 percent error to predict the stock index.

کلیدواژه ها:

نویسندگان

Mohammad Kadkhoda

Academic Staff, Mathematics & Informatics Research Group,ACECR at Tarbiat Modares University, P. O. Box: ۱۴۱۱۵-۳۴۳ Tehran, Iran

Rozbeh Serri

Faculty of Electrical & Computer Engineering Science & Research Branch, Islamic Azad University Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • حسنعلی سینایی، سعید ...مرتضوی، یاسر تیموری اصل، پیش بینی شاخص ...
  • Preeti Paranj ape-Voditel, Umessh Deshpande.A stock market portfolio recommender system ...
  • Jones, P. (1999). Investments; Analysis and management, Jane Wiley and ...
  • Acquaah, M & Chi, T. (2007). A Longitudinal analysis of ...
  • Ahmed A. Gamil, Raafat S. El-fouly, and Nevin M Darwish, ...
  • Fama E. F.(1970). "Efficient capital market: A review of theory ...
  • Yakup Kara, Melek Acar Boyacioglu Omer Kaan Baykan, Predicting direction ...
  • Refenes, A, A. Zapranis & G. Frandi, (1994). Stock Performance ...
  • George S. Atsalakis, Kimon P. Valavanis , Surveying stock market ...
  • Robert J. & Van Eyden (1996). "The Application of Neural ...
  • Shu-Hsien Liao, Hsu-hui Ho, and Hui-wen Lin. 2008. Mining stock ...
  • Jiawei Han, Micheline Kamber, Data Mining: Concepts and Techniques, Simon ...
  • نمایش کامل مراجع