Prediction of the MMP by Using of Artificial Intelligence
محل انتشار: هفتمین کنگره ملی مهندسی شیمی
سال انتشار: 1390
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 743
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICHEC07_625
تاریخ نمایه سازی: 25 فروردین 1394
چکیده مقاله:
An important factor in the design of gas injection projects is the minimum miscibility pressure (MMP). A new genetic algorithm (GA)-based correlation and two neural network models (one of them is trained by BP algorithm and another is trained by PSO algorithm) have been developed to estimate the CO2–oil MMP. The correlation and models use the following key input parameters: reservoir temperature, molecular weight of C5+, mole percentage of the volatiles and intermediate components (for the first time, the mole percentages are used as independent variables). Then results have been validated against experimental data and are finally compared with commonly used correlations reported in the literature;The results show that the neural network model trained by BP algorithm and the correlation that has been developed by GA can be applied effectively and afford high accuracy and dependability for MMP forecasting
کلیدواژه ها:
نویسندگان
a Ebrahimi
Department of Chemical Eng., Amirkabir University of Technology, Hafez Ave., Tehran, Iran
h Rasouli
Department of Chemical Eng., Amirkabir University of Technology, Hafez Ave., Tehran, Iran
f Rashidi
Department of Chemical Eng., Amirkabir University of Technology, Hafez Ave., Tehran, Iran
e Khamehchi
Department of Chemical Eng., Amirkabir University of Technology, Hafez Ave., Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :