One Month Ahead Temperature Prediction for Mid-term Load Forecasting

سال انتشار: 1382
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,737

فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

PSC18_103

تاریخ نمایه سازی: 28 اردیبهشت 1386

چکیده مقاله:

Temperature is the most important factor in load forecasting of power system analysis. Particularly in short-term load forecasting, it plays an important role in increase/decrease of energy consumption. For instance, according to the Japanese Power Industry announcement in 2001, increase of 1 degree Celsius will cause about 5GW increase in electric power consumption at the summer peak. This amount is as same as consumption power used by 1.6 million general households or amount of generated power by 5 large-scale utility power plants. On the other side, 1 degree Celsius of temperature change had caused about 1.85GW increase in power consumption in the winter of year 2000. Basically, the short-term temperature (hourly up to 1 week ahead) is researched and predicted by environment agencies of every country. Therefore, it is easy to obtain the forecasted temperature data from those agencies, newspapers, TV news and so on. However, it is difficult to obtain the hourly temperature beyond 1 week. Although Japan Meteorological Agency (JMA), which uses the Numerical Weather Predictions (NWP), announces the forecasting data up to 1 or 2 months ahead, but they are expressed only as “high” or “low” which is compared with normal years. This means, we can only know that the temperature may goes up or comes down every day. In addition, super-computer processes it with lots of complex meteorological formulations. The applied data the ones which have observed by weather satellite all over the world. However, if the temperature could be predicted for a longer period, it becomes even a useful factor for projecting a better resolution for the long-term load forecasting, prediction of fuel amount necessary for next couple months of power plants and soforth. In this paper, some intelligent methodologies such as artificial neural network and a combined neuro-genetic algorithm have been used to predict the temperature up to one month ahead

کلیدواژه ها:

نویسندگان

Bahman Kermanshahi

Department of Electrical and Electronics Engineering Tokyo University of Agriculture & Technology (JAPAN)

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Testuhiko Takatsuka:، Weather Condition Forecasting?, Seito Publishing Company, Tokyo, chapter ...
  • Takehiko Furukawa:، ،Introduction to Weather Forecasting Techniques", Ohm Publishing Company, ...
  • A. Khotanzad, et al., ،0An Artificial Neural Network Hourly Temperature ...
  • B. Kermanshahi, et al., *Temperature Forecasting using Artificial Neural Networks?, ...
  • نمایش کامل مراجع