Application of Artificial Neural Network for Modeling Oxidative Desulfurization process
محل انتشار: دهمین کنگره ملی مهندسی شیمی ایران
سال انتشار: 1384
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,309
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NICEC10_054
تاریخ نمایه سازی: 6 بهمن 1385
چکیده مقاله:
In recent years Oxidative desulfurization process, having significant advantage against other well-known desulfurization process, have received considerable attention. In this study, modeling of Oxidative desulfurization of fuel oil was investigated using artificial neural network (ANN). It is found that ANN provides a useful method for developing nonlinear relations between variables. To determine effective parameters on ODS process; a principal component analysis was performed on data. The results showed that oxidant quantity, contact time and reactor temperature play important roles in determination of desulfurization performance. An artificial neural network, using back propagation (BP), was also utilized for modeling oxidative desulfuration process of fuel oil. Different structures were tried with several neurons in the hidden layer and the total error was calculated. Finally, eight hidden neurons were applied. The comparison between the outputs of ANN modeling being referred as BP-NN 5:8:1 and the experimental data showed satisfactory agreement.
کلیدواژه ها:
نویسندگان
Salari
Laboratory of Petroleum Technology, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
Rostamizadeh
Laboratory of Petroleum Technology, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran