Enhancing Greenhouse Seedling Transplantation Efficiency Using YOLOv۸ and AI-Based Image Processing
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 112
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NCAMEM16_026
تاریخ نمایه سازی: 22 آبان 1403
چکیده مقاله:
The shortage of labor in agriculture, particularly in greenhouse vegetable production, presents a significant challenge to global food security. This study explores the integration of Artificial Intelligence (AI) and image processing to enhance the efficiency and accuracy of seedling transplantation. Utilizing the YOLOv۸ model, we developed an AI system capable of distinguishing seedlings such as pepper from empty cells with high precision. High-quality RGB images were collected and annotated using cvat.ai, and the model was trained on Google Colab with ۳۰۰ epochs. The results demonstrated a significant reduction in bounding box, class, and object losses, alongside improvements in precision, recall, and mean average precision (mAP). Visual validation confirmed the model's effectiveness in real-world conditions. This research highlights the potential of AI-based image processing to address labor shortages, optimize resource use, and improve overall agricultural productivity and sustainability
کلیدواژه ها:
نویسندگان
Saeed khodatars
Department of Biosystems Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
Vali rasoli sharabiani
Department of Biosystems Engineering, University of Mohaghegh Ardabili, Ardabil, Iran