Estimation of water quality parameter using soft computing approach:a case study of the Karun River, Iran
سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 120
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CESES01_013
تاریخ نمایه سازی: 1 آبان 1403
چکیده مقاله:
The quality of surface water is a critical factor in evaluating its suitability for irrigation. This study employeddata from the Mollasani gauge station to analyze the total dissolved solids (TDS) content of the water bycalculating various water quality parameters, including sodium adsorption rate (SAR), sodium percentage(Na%), Kelly index (KI), and permeability index (PI). SAR, KI, and Na% values ranged from ۱.۷۶ to ۹.۶۳meq/L, ۰.۴۱۲ to ۲.۰۸۶, and ۲۹.۸۸ to ۶۷.۶۴%, respectively. Approximately ۳۵% of the water samples wereclassified as suitable for irrigation based on their PI values. TDS values obtained from the study area variedbetween ۳۸۴ and ۲۱۲۵ mg/L. To effectively predict TDS values, an artificial neural network (ANN) modelwas developed using the aforementioned water quality parameters. Seven ANN models were trained, andtheir statistical performance was assessed using R۲ and RMSE. The best model achieved an outstandingtesting R۲ value of ۰.۹۴۸, demonstrating its superior predictive power. The strong association between theANN model's estimation results and experimental data (R۲ = ۰.۹۶) further confirms its effectiveness. Thisstudy establishes ANN as a reliable and efficient method for estimating TDS based on various water qualityparameters.
کلیدواژه ها:
نویسندگان
Shadi KalantarHormozi
Master Student of hydraulics Structures, Faculty of Water and Environmental Engineering, Shahid ChamranUniversity of Ahvaz, Ahvaz, Iran.
Mohammadreza Zayeri
assistance professor of hydraulics structures, Faculty of Water and Environmental Engineering, ShahidChamran University of Ahvaz, Ahvaz, Iran