A Hybrid Genetic Algorithm-Neural Network for Modeling of Periodic Nonlinearity in Three-Longitudinal-Mode Laser Heterodyne Interferometer

سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,591

فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICEE21_639

تاریخ نمایه سازی: 27 مرداد 1392

چکیده مقاله:

Laser heterodyne interferometer is a common nanometrology system which is used for high-accuracy displacement measurements in industry. Measurement accuracy in this systemis limited by the periodic nonlinearity error. In this paper, the nonlinearity error of the nano-metrology interferometric systembased on three-longitudinal-mode laser heterodyne interferometer has been modeled by artificial neural network (ANN) and hybrid genetic algorithm–neural network (hybrid GA–ANN). The real code version of genetic algorithm (GA) is used. Genetic operators and parameters are set and designedaccurately for optimizing the neural network. The results indicate that nonlinearity error can be effectively modeled byhybrid GA–ANN method and contains minimum mean square error (MSE) compared to the neural network

نویسندگان

Saeed Olyaee

Nano-photonics and Optoelectronics Research Laboratory (NORLab) and Brain and Intelligent Systems Research Laboratory (BISLab), Faculty of Electrical and Computer Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran