Integrating Volume Features with Technical Indicators for Stock Price Direction Prediction in the Tehran Stock Exchange: A Case Study of Bandar Abbas Oil Refining Company
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 66
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CONFIT01_1075
تاریخ نمایه سازی: 4 مهر 1403
چکیده مقاله:
This research investigates the efficacy of integrating volume features with technical indicators to improve stock price movement prediction accuracy, focusing on the shares of Bandar Abbas Oil Refining Company. Utilizing the company's transaction data from its listing date, key technical and volume features were extracted. A random forest model was employed to predict the stock's price direction for the upcoming week, achieving an accuracy of ۸۰% on the test set. On-Balance Volume (OBV), lower Bollinger Band, Moving Average Convergence Divergence (MACD), and upper Bollinger Band were identified as important predictors, highlighting the significance of volume metrics alongside technical indicators for forecasting stock price direction in the Tehran Stock Exchange market.
کلیدواژه ها:
Stock price prediction ، Tehran Stock Exchange ، TSE ، volume features ، technical indicators ، random forest ، machine learning ، ensemble methods ، trading volume ، MACD ، Bollinger Bands ، ATR ، OBV ، feature importance ، market dynamics ، investment strategies ، risk management ، algorithmic trading.
نویسندگان
Mohammadreza Ayatollahi
Faculty of Management and Accounting, College of Farabi, University of Tehran, Tehran, Iran
Seyed Mohammadbagher Jafari
Faculty of Management and Accounting, College of Farabi, University of Tehran, Tehran, Iran