Sentiment Analysis: Exploring the Challenges, Processing, Tools,Approaches and Applications
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 162
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CONFIT01_0774
تاریخ نمایه سازی: 4 مهر 1403
چکیده مقاله:
Sentiment analysis is a branch of natural language processing (NLP) that uses computational tools to extract, identify and analyse subjective information from text. It has become a crucial tool in analysing massive amounts of data from online sources, such as social media, news articles, and customer reviews. The main approaches to sentiment analysis include rule-based analysis and machine learning-based analysis, with hybrid models becoming increasingly popular. Sentiment analysis has a wide range of practical applications, including monitoring brand reputation, predicting stock prices, and measuring public opinion. However, challenges exist in accurately interpreting the nuances of human language and evaluating performance. Advances in machine learning and NLP are continuously improving the accuracy and efficiency of sentiment analysis, leading to even deeper insights into the world of human language. In this article, we have examined various challenges, processing, dataset, tools, approaches and applications in the field of sentiment analysis.
کلیدواژه ها:
نویسندگان
Kazem Taghandiki
Department of Computer Engineering, Technical and Vocational University (TVU), Tehran, Iran
Morteza Dallakehnejad
Assistant Professor, Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran.