Finding Association Rules in Linked Data, a Centralization Approach

سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,162

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICEE21_071

تاریخ نمایه سازی: 27 مرداد 1392

چکیده مقاله:

Linked Data is used in the Web to create typed links between data from different sources. Connecting diffused data by using these links provides new data which could be employed indifferent applications. Association Rules Mining (ARM) is a data mining technique which aims to find interesting patterns and rulesfrom a large set of data. In this paper, the problem of applying association rules mining using Linked Data in centralizationapproach has been addressed -i.e. arranging collected data from different data sources into a single dataset and then apply ARM onthe generated dataset. Firstly, a number of challenges in collectingdata from Linked Data have been presented, followed by applying the ARM using the dataset of connected data sources. Preliminary experiments have been performed on this semantic data showing promising results and proving the efficiency, robust, and useful of the used approach

نویسندگان

Reza Ramezani

Isfahan University of Technology, Iran

Mohammad Saraee

University of Salford, Manchester, UK

Mohammad Ali Nematbakhsh

University of Isfahan, Iran