Studying the Kinetics of the Autothermal Thermophilic Aerobic Digestion: Application of AI-based modeling

سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 102

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

IRCCE12_023

تاریخ نمایه سازی: 2 مرداد 1403

چکیده مقاله:

Autothermal Thermophilic Aerobic Digestion, a widely used wastewater treatment method, uses heat-loving microbes to efficiently break down organic matter in sludge without external heating. While complex, understanding the intricate kinetics of this process is crucial for optimization. This study proposes an Artificial Neural Network model, trained on real data, to predict predicting the kinetic rate constant (KATAD). The model, enhanced through Genetic Algorithm optimization, demonstrates exceptional accuracy (more than ۹۹%). Evaluation reveals temperature as the most influential parameter (CI = ۱.۲۳), followed by the primary to secondary sludge ratio (CI = -۰.۴۷), and concentration with the least impact on KATAD (CI = ۰.۱۹).

کلیدواژه ها:

Artificial Neural Network ، Autothermal Thermophilic Aerobic Digestion ، Biodegradation Kinetics ، Genetic Algorithm ، Rate Constant

نویسندگان

Kourosh Fakhari

Biotechnology Group, Chemical Engineering Department, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran

Armin Rahimieh

Biotechnology Group, Chemical Engineering Department, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran

Mohsen Nosrati

Biotechnology Group, Chemical Engineering Department, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran