Artificial Intelligence Approach in Biomechanical Analysis of Gait.

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 115

فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JJAST-7-2_003

تاریخ نمایه سازی: 6 آبان 1402

چکیده مقاله:

The objective of the current investigation was to conduct a biomechanical analysis of human gait based on the Unsupervised machine learning – Artificial Intelligence approach. Twenty-eight junior active males participated in the study. Following the placement of the markers, the participants were asked to complete the gait task in a ۱۰-meter gateway where the dominant leg contact was placed on the third step and non- non-dominant leg on the fourth step. The task was executed in two separate attempts, first by the preferred speed of the participants and second with a steady speed of ۱۰۰BPM. The Hierarchical approach consisting of Nearest Neighbor and the utilization of Z score was employed to discern uniform gait biomechanical patterns of the entire participant according to the values of joint angles and joint moments in both conditions - preferred and steady speeds by SPSS software version ۲۶ (p<۰.۰۵). Considering a combination of both kinematics and kinetics parameters, in preferred speed, the hip and knee in the vertical direction for both dominant and non-dominant limbs are classified in one cluster, but in a steady speed, the hip in mediolateral direction and knee in the vertical direction for both dominant and non-dominant limbs are presented in one cluster. The kinematic and kinetic variables are useful in gate clustering to categorize gait patterns. These variables can be subdivided into homogeneous subgroups for a more detailed understanding of human locomotion.

نویسندگان

Rozhin Molavian

Department of Sports Biomechanics, Central Tehran Branch, Islamic Azad University, Tehran

Ali Fatahi

Department of Sports Biomechanics, Faculty of Physical Education and Sports Science, Islamic Azad University of Central Tehran Branch, Tehran, Iran.

Hamed Abbasi

Department of Sport Injuries and Corrective Exercises, Sports Medicine Research Center, Sport Sciences Research Institute, Tehran, Iran

Davood Khezri

Department of Sports Biomechanics, Sport Sciences Research Institute, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Khera P, Kumar N. Role of machine learning in gait ...
  • Molavian R, Salehi M, Alizadeh R. A Comparison of Kinematic ...
  • Fatahi A, Molaviaan R. Comparison of Kinematics and kinetics Symmetry ...
  • Phinyomark A, Petri G, Ibáñez-Marcelo E, Osis ST, Ferber R. ...
  • Izhar CAA, Hussain Z, Maruzuki M, Sulaiman MS, Abd Rahim ...
  • Farah JD, Baddour N, Lemaire ED, editors. Gait phase detection ...
  • Dolatabadi E, Taati B, Mihailidis A. An automated classification of ...
  • Lai DT, Begg RK, Palaniswami M. Computational intelligence in gait ...
  • Paulo J, Peixoto P, Amorim P. Trajectory-based gait pattern shift ...
  • Kutilek P, Hozman J, editors. Prediction of lower extremities movement ...
  • Farah JD, Baddour N, Lemaire ED. Design, development, and evaluation ...
  • Begg R, Kamruzzaman J. Neural networks for detection and classification ...
  • Lau H-Y, Tong K-Y, Zhu H. Support vector machine for ...
  • Faraji B, Khezri D. Ultra-Local Model Control of Parkinson's Patients ...
  • Souza AdMe, Stemmer MR. Extraction and classification of human body ...
  • Shim H-m, Lee S. Multi-channel electromyography pattern classification using deep ...
  • Wei W, McElroy C, Dey S, editors. Human Action Understanding ...
  • Leightley D, McPhee JS, Yap MH. Automated analysis and quantification ...
  • Van Gestel L, De Laet T, Di Lello E, Bruyninckx ...
  • Mu T, Pataky TC, Findlow AH, Aung MS, Goulermas JY. ...
  • Khezri D, Eslami M, Yousefpour R. Clustering healthy runner based ...
  • Yoo TK, Kim SK, Choi SB, Kim DY, Kim DW, ...
  • Xiong B, Zeng N, Li H, Yang Y, Li Y, ...
  • Zeng W, Ismail SA, Pappas E. Classification of gait patterns ...
  • Alaqtash M, Sarkodie-Gyan T, Yu H, Fuentes O, Brower R, ...
  • Devanne M, Wannous H, Daoudi M, Berretti S, Del Bimbo ...
  • Costa Á, Iáñez E, Úbeda A, Hortal E, Del-Ama AJ, ...
  • Goh SK, Abbass HA, Tan KC, Al-Mamun A, Thakor N, ...
  • Paulo J, Peixoto P, Nunes UJ. ISR-AIWALKER: Robotic walker for ...
  • Liu D-X, Du W, Wu X, Wang C, Qiao Y, ...
  • Thongsook A, Nunthawarasilp T, Kraypet P, Lim J, Ruangpayoongsak N, ...
  • Mezghani N, Fuentes A, Gaudreault N, Mitiche A, Aissaoui R, ...
  • Simonsen EB, Alkjær T. The variability problem of normal human ...
  • Vardaxis VG, Allard P, Lachance R, Duhaime M. Classification of ...
  • Phinyomark A, Osis S, Hettinga BA, Ferber R. Kinematic gait ...
  • Roche N, Pradon D, Cosson J, Robertson J, Marchiori C, ...
  • Toro B, Nester CJ, Farren PC. Cluster analysis for the ...
  • Ferrarin M, Bovi G, Rabuffetti M, Mazzoleni P, Montesano A, ...
  • Kinsella S, Moran K. Gait pattern categorization of stroke participants ...
  • Watelain E, Barbier F, Allard P, Thevenon A, Angué J-C. ...
  • Hoerzer S, von Tscharner V, Jacob C, Nigg BM. Defining ...
  • Ezugwu AE, Ikotun AM, Oyelade OO, Abualigah L, Agushaka JO, ...
  • Saxena A, Prasad M, Gupta A, Bharill N, Patel OP, ...
  • Ruff L, Kauffmann JR, Vandermeulen RA, Montavon G, Samek W, ...
  • Grau S, Maiwald C, Krauss I, Axmann D, Horstmann T. ...
  • Hreljac A, Ferber R. A biomechanical perspective of predicting injury ...
  • Ferber R, Hreljac A, Kendall KD. Suspected mechanisms in the ...
  • Fukuchi RK, Stefanyshyn DJ, Stirling L, Duarte M, Ferber R. ...
  • Phinyomark A, Hettinga BA, Osis ST, Ferber R. Gender and ...
  • Osis ST, Hettinga BA, Macdonald SL, Ferber R. A novel ...
  • نمایش کامل مراجع