Artificial Intelligence Approach in Biomechanical Analysis of Gait.
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 115
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JJAST-7-2_003
تاریخ نمایه سازی: 6 آبان 1402
چکیده مقاله:
The objective of the current investigation was to conduct a biomechanical analysis of human gait based on the Unsupervised machine learning – Artificial Intelligence approach. Twenty-eight junior active males participated in the study. Following the placement of the markers, the participants were asked to complete the gait task in a ۱۰-meter gateway where the dominant leg contact was placed on the third step and non- non-dominant leg on the fourth step. The task was executed in two separate attempts, first by the preferred speed of the participants and second with a steady speed of ۱۰۰BPM. The Hierarchical approach consisting of Nearest Neighbor and the utilization of Z score was employed to discern uniform gait biomechanical patterns of the entire participant according to the values of joint angles and joint moments in both conditions - preferred and steady speeds by SPSS software version ۲۶ (p<۰.۰۵). Considering a combination of both kinematics and kinetics parameters, in preferred speed, the hip and knee in the vertical direction for both dominant and non-dominant limbs are classified in one cluster, but in a steady speed, the hip in mediolateral direction and knee in the vertical direction for both dominant and non-dominant limbs are presented in one cluster. The kinematic and kinetic variables are useful in gate clustering to categorize gait patterns. These variables can be subdivided into homogeneous subgroups for a more detailed understanding of human locomotion.
کلیدواژه ها:
نویسندگان
Rozhin Molavian
Department of Sports Biomechanics, Central Tehran Branch, Islamic Azad University, Tehran
Ali Fatahi
Department of Sports Biomechanics, Faculty of Physical Education and Sports Science, Islamic Azad University of Central Tehran Branch, Tehran, Iran.
Hamed Abbasi
Department of Sport Injuries and Corrective Exercises, Sports Medicine Research Center, Sport Sciences Research Institute, Tehran, Iran
Davood Khezri
Department of Sports Biomechanics, Sport Sciences Research Institute, Tehran, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :