Forecasting Startup Return using Artificial Intelligence Methods and Econometric Models and Portfolio Optimization Using VaR and C-VaR

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 317

فایل این مقاله در 32 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJIEN-2-1_007

تاریخ نمایه سازی: 12 دی 1401

چکیده مقاله:

In this paper, we have tried to study the main role of startups in economy, their characteristics, main goals and etc. The main goal of article is prediction of startup's return using artificial intelligence methods such as genetic algorithm (GA) and artificial neural network (ANN). Some global indices such as S&P۵۰۰, DJAI, and economic indicators such as ۱۰ years Treasury yield, Wilshire ۵۰۰۰ Total Market Full Cap Index along with some other special indicators in startups like team, idea, timing and etc. are used as input variables. GA is used as feature selection and finding the most important variables. ANN is used as an optimization model and prediction of startup's returns. We used econometric models such as regression analysis. We have estimated Value at risk (VaR) and Conditional Value at risk (C-VAR) for considered portfolios including three startups (public company) such as Dropbox, Inc. (DBX), Scout۲۴ SE (G۲۴.DE) and TIE.AS and optimal portfolio formation. The results show that AI based methods are more powerful in prediction of startup's return. On the other hand, VaR and C-VaR models are very beneficial approach in minimizing risk and maximizing return.

کلیدواژه ها:

Artificial Neural Network (ANN) ، Genetic Algorithm (GA) ، Econometric Models ، Startup valuation ، Value at Risk and Conditional Value at Risk (VaR & C-VaR)

نویسندگان

Milad Shahvaroughi Farahani

Department of Finance, Faculty of Finance, Khatam University, Tehran, Iran

Amirhossein Esfahani

Department of Accounting, Eslamshahr University, Tehran, Iran