A Hybrid Approach for Software Development Effort Estimation using Neural networks, Genetic Algorithm, Multiple Linear Regression and Imperialist Competitive Algorithm

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 287

فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-11-1_017

تاریخ نمایه سازی: 11 آذر 1401

چکیده مقاله:

Nowadays, effort estimation in software development is of great value and significance in project management. Accurate and appropriate cost estimation not only helps customers trust to invest but also has a significant role in logical decision making during project management. Different models of cost estimation are presented and employed to the date, but the models are application specific. In this paper, a three-phase hybrid approach is proposed to overcome the problem. In the first phase, features are selected using a combination of genetic algorithm and the perceptron neural network. In the second phase, impact factors are associated to each selected feature using multiple linear regression methods which act as coefficients of influence for each feature. In the last and the third phase, the feature weights are optimized by Imperialist Competitive Algorithm. To compare the proposed model for effort estimation with state-of-the-art models, three datasets are chosen as benchmark, namely COCOMO, Maxwell and Albrecht. The datasets are standard and publicly available for assessment. The experiments show promising results and average performance is improved by the proposed model for MMRE performance criterion on the datasets by ۲۳%, ۳۸% and ۳۵%, respectively.

کلیدواژه ها:

Software Development Effort Estimation ، Multiple Linear Regression (MLR) ، Neural Network ، Genetic Algorithm (GA) ، Imperialist Competitive Algorithm (ICA) ، Maxwell ، Albrecht ، COCOMO

نویسندگان

- -

Computer engineering department, Kerman branch, Islamic Azad University, Kerman, Iran

- -

Computer engineering department, Bardsir branch, Islamic Azad University, Bardsir, Iran

- -

Department of Energy Management and Optimization, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran