A Review of Deep Learning: Theory & Architectures

سال انتشار: 1401
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 385

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

DCBDP07_055

تاریخ نمایه سازی: 7 خرداد 1401

چکیده مقاله:

Deep Learning (DL), a subfield of machine learning, is essentially a neural network with three or more layers. It has achieved remarkable success in a wide range of areas over the last decade. Deep Learning is inspired by the structure of the human brain. "Artificial Neural Network" is the term applied to this structure. Advances in Big Data have enabled more profound, more complex neural networks to explore features and find connections between data without human intervention. Thus, DL algorithms tend to perform significantly better when it is powered by a vast amount of structured or unstructured data. In this paper, we will explain the concept and theory behind Deep Learning from a variety of perspectives. First, we will explain different approaches used to solve complex problems in deep learning. Second, we will delve into the fundamental building blocks of deep neural networks, and we will explain the procedure of how they work. Finally, we will introduce a variety of popular deep learning architectures.

نویسندگان

Reza Fayyazi

Department of Computer Engineering Faculty of Engineering, Arak University ۳۸۱۵۶-۸-۸۳۴۹ Arak, Iran

Maryam Amiri

Department of Computer Engineering Faculty of Engineering, Arak University ۳۸۱۵۶-۸-۸۳۴۹ Arak, Iran