A Review of Deep Learning: Theory & Architectures
سال انتشار: 1401
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 385
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
DCBDP07_055
تاریخ نمایه سازی: 7 خرداد 1401
چکیده مقاله:
Deep Learning (DL), a subfield of machine learning, is essentially a neural network with three or more layers. It has achieved remarkable success in a wide range of areas over the last decade. Deep Learning is inspired by the structure of the human brain. "Artificial Neural Network" is the term applied to this structure. Advances in Big Data have enabled more profound, more complex neural networks to explore features and find connections between data without human intervention. Thus, DL algorithms tend to perform significantly better when it is powered by a vast amount of structured or unstructured data. In this paper, we will explain the concept and theory behind Deep Learning from a variety of perspectives. First, we will explain different approaches used to solve complex problems in deep learning. Second, we will delve into the fundamental building blocks of deep neural networks, and we will explain the procedure of how they work. Finally, we will introduce a variety of popular deep learning architectures.
کلیدواژه ها:
نویسندگان
Reza Fayyazi
Department of Computer Engineering Faculty of Engineering, Arak University ۳۸۱۵۶-۸-۸۳۴۹ Arak, Iran
Maryam Amiri
Department of Computer Engineering Faculty of Engineering, Arak University ۳۸۱۵۶-۸-۸۳۴۹ Arak, Iran