IRHM: Inclusive Review Helpfulness Model for Review Helpfulness Prediction in E-commerce Platform
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 188
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JITM-12-2_014
تاریخ نمایه سازی: 25 بهمن 1400
چکیده مقاله:
Online reviews have become essential aspect in E-commerce platforms due to its role for assisting customers’ buying choices. Furthermore, the most helpful reviews that have some attributes are support customers buying decision; therefore, there is needs for investigating what are the attributes that increase the Review Helpfulness (RH). This research paper proposed novel model called inclusive review helpfulnessmodel (IRHM) can be used to detect the most attributes affecting the RH and build classifier that can predict RH based on these attributes. IRHM is implemented on Amazon.com using collection of reviews from different categories. The results show that IRHM can detect the most important attributes and classify the reviews as helpful or not with accuracy of ۹۴%, precision of ۰.۲۰ and had excellent area under curve close to ۰.۹۴.
کلیدواژه ها:
نویسندگان
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :