Reservoir Storage Simulation Using Artificial Neural Network Models –Lar Dam

سال انتشار: 1390
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,363

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

NCHP03_108

تاریخ نمایه سازی: 3 فروردین 1391

چکیده مقاله:

Artificial intelligence has been developed recently due to its efficiency in various aspect of science. For instance, there have been lots of improvements in the artificial neural networks which are used also as a predictor and simulator in order to evaluate the performance of water resource systems. Artificial neural networks are working based on the past events observation and establishing empirical relations among them. Furthermore, much attention has been considered today for the optimalmanagement of water resources forecasting system components (WRFSC). Due to importance of WRFSC, a statistical model has been developed in this paper which predicts the storage volume of reservoirs with the means of different type of networks such as artificial neural networks, dynamic neural networks, etc.; the results of the examination of models have been illustrated and the best fitted model has been selected. Lar dam has been used as a case study in this paper which is located 35kilometers far from Rude Hen in order to select the most efficient among variousneural network models. Lar dam has an important role in supply water demand of Tehran metropolitan. In order to design a model which is estimating the most realistic view of future conditions, different models have been studied and compared. The results of this paper indicate storage volume of reservoir which is simulated by artificial neural network could be used in future performance policies of dams

نویسندگان

Erfan Goharian

School of Civil Engineering, University of Tehran, Enqelab Sq, Tehran, Iran

Hassan Tavakol Davani

School of Civil Engineering, University of Tehran, Enqelab Sq., Tehran, Iran

Donya Goharian

Faculty of Computer Science and Information Technology, University Putra, Malaysia

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • runoff forecasting, 4th مح [8] Madsen, H., M.B .ButtsS.T.Khu., S. ...
  • McCulloch, W.S., Pitts, W.H.: A logical calculus of the ideas ...
  • Hsu, K.L, Gupta, H.V., Sorooshian, S. : Artificial neural network ...
  • Jain, S.K. : Development of intenerated sediment rating curves using ...
  • Garcia, L.A., Shigidi, A. : Using neural networks for parameter ...
  • Sarangai, _ Bhattcharya, A.K. : Comparison of Artificial Neural Network ...
  • Cigizoglu, G.H. : Estimation and Forecasting of daily suspended sediment ...
  • Fausett, L. : Fundamental of Neural Networks" Prentice Hall, 1994. ...
  • Sudheer, K.P., Gosain, A.K., Ramasastri, K.S. : A data-driven algorithm ...
  • نمایش کامل مراجع