Prediction of Aftershocks Distribution Using Artificial Neural Networks and Its Application on the May ۱۲, ۲۰۰۸ Sichuan Earthquake
سال انتشار: 1388
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 188
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JSEE-11-3_001
تاریخ نمایه سازی: 14 آبان 1400
چکیده مقاله:
In this paper an approach is presented to predict the concentration and the trend of aftershocks of May ۱۲ ۲۰۰۸ Chengdu, Sichuan, China earthquake. The method is based on inputting first aftershocks to Kohonen artificial neural network. Artificial neural networks, which are inspired from human brain, consist of several artificial neurons which are connected with some weight vectors to each other. Artificial neural networks are able to classify a large volume of input data (i.e. earthquake catalogue) simultaneously and in parallel, and can recognize seismic patterns very well. Kohonen neural networks consist of several neurons that affect mutually on each other to display important statistical characteristics of the input space (i.e. first aftershocks). Combination of associative and competitive learning rules results in formation of Kohonen's self-organizing feature map (SOFM) algorithm. SOFM algorithm has converged; the feature map computed by the SOFM algorithm indicates the concentration and the trend of aftershocks precisely. Kohonen artificial neural networks have become powerful intelligent tools in recent years, used widely in pattern recognition and data clustering.
کلیدواژه ها:
نویسندگان
R. Madahizadeh
IIEES
M. Allamehzadeh
IIEES