S&P۵۰۰ Index Direction Prediction Using Textual Tweets and Their Corresponding Sentiment
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 332
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JAISIS-2-1_003
تاریخ نمایه سازی: 1 شهریور 1400
چکیده مقاله:
In this paper, a novel method is proposed to predict the direction of Standard & Poor ۵۰۰ (S&P۵۰۰) index using the tweets in this regard as well as the index amount from the day before. At the beginning, using a dataset of all tweets and their corresponding posting times about S&P۵۰۰ index, companies and securities are considered as features of the study. Next, these feature vectors are assigned three different labels based on the direction of the index change from the day before and whether the change is significant enough, creating a classification problem. Building a sentiment analysis tool based on T۵ transformer which attempts to combine all the downstream tasks into a text-to-text format, sentiment feature is added to each tweet in the dataset. Lastly, after balancing the data and preprocessing the textual information through an NLP pipeline, a deep neural network is proposed to classify the processed data. It is shown that using the tweets and their corresponding sentiments, the proposed method for movement direction prediction of the S&P۵۰۰ index outperformed other existing models.
کلیدواژه ها:
نویسندگان
Parman Mohammadalizadeh
Artificial Intelligence and Robotics
Mohammadjavad Jafari
Science and Research Branch, Islamic Azad University, Tehran, Iran