Authorship Attribution In Historical And Literary Texts By A Deep Learning Classifier
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 286
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JAISIS-1-2_006
تاریخ نمایه سازی: 17 فروردین 1400
چکیده مقاله:
One of the important problems that language and literature scholars face is the difficulty of determining the author of the historical and literary texts. Deep learning, the latest available approaches for solving such problems, provides high accuracy results. In this paper, we show how to overcome ownership claims in historical texts by deep learning methods that are designed for text classification. In this regard, we propose a convolution neural network with a four-part architecture and self-attention mechanism to classify texts. In addition, the proposed method increases the accuracy of Author determination up to 2% in comparison with existing methods. Moreover, in our case study, Khān al-Ikhwān, written by Nāsir-i Khusraw, the author determination accuracy was 86%. Although our focus is on Persian historical textbooks through this article, our method can be applied to other languages effectively.
کلیدواژه ها:
نویسندگان
Ehsan Reisi
Persian Language and Literature, Faculty of Literature and Humanities, university of Isfahan, isfahan
Hassan Mahboob Farimani
Center of Fundamental and Applied Studies of Mystical Literature, University of Isfahan, Azadi square, Isfahan, Iran