ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
ناشر تخصصی کنفرانسهای ایران
ورود |عضویت رایگان |راهنمای سایت |عضویت کتابخانه ها
عنوان
مقاله

مقایسة روش های شبکه عصبی مصنوعی، ماشین بردار پشتیبان و شیءگرا در استخراج کاربری و پوشش اراضی از تصاویر لندست 8

سال انتشار: 1394
کد COI مقاله: JR_GIRS-6-3_001
زبان مقاله: فارسیمشاهده این مقاله: 45
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 14 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله مقایسة روش های شبکه عصبی مصنوعی، ماشین بردار پشتیبان و شیءگرا در استخراج کاربری و پوشش اراضی از تصاویر لندست 8

فرنوش اسلمی - دانش آموخته کارشناسی ارشد سنجش از دور و GIS، دانشگاه محقق اردبیلی
اردوان قربانی - دانشیار دانشکده فناوری کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی
بهروز سبحانی - دانشیار دانشکده علوم انسانی، دانشگاه محقق اردبیلی
محسن پناهنده - کارشناس ارشد جغرافیا، سازمان فضایی ایران

چکیده مقاله:

تهیة نقشه کاربری/پوشش اراضی، برای برنامه­ریزی و مدیریت مکانی ضروری است. امروزه تصاویر ماهوره­ای و تکنیک­های سنجش از دور،به دلیل فرآهم آوردن داده­های بهنگام و قابلیت بالای آنالیز تصاویر، کاربرد گسترده­ای در تمامی بخش­ها از جمله بخش­های کشاورزی و منابع طبیعی دارند. در پژوهش حاضر طبقه­بندی­کننده­های شبکه عصبی مصنوعی، ماشین بردار پشتیبان و شیءگرا جهت تهیه نقشةکاربری/پوشش اراضی شهرستان­های اردبیل، نیر و نمین مورد ارزیابی قرار گرفت. تصویر سنجندة (OLI) Operational Land Imager لندست 8 (سال 2013) پس از تصحیحات هندسی و توپوگرافیکی تحت این الگوریتم­ها قرار گرفته و به 9 طبقة کاربری و پوشش اراضی شامل پهنه­های آبی، زراعت آبی، زراعت دیم، چمنزار، برونزدگی سنگی، جنگل، مرتع، عرصه­های مسکونی و انسان­ساخت و فرودگاه طبقه­بندی شد. پس از ارزیابی صحت، صحت کلی برای نقشة حاصل از شبکه عصبی مصنوعی، ماشین بردار پشتیبان و شیءگرا به ترتیب برابر با 91/89، 68/85 و37/94 درصد و مقدار کاپای آن­ها به ترتیب 88/0، 82/0 و 93/0 برآورد شد که نشان­دهنده برتری روش شیءگرا در مقایسه با دو روش دیگر است. هر سه روش توانستند صحتی قابل قبول برای نقشه­ها­ی کاربری/پوشش اراضی ارائه دهند. در کل، سه روش طبقه­بندی پیشرفته، در منطقة ناهمگن با تغییرات ارتفاعی بیش از 3600 متر با استفاده از نسل جدید تصاویر سنجنده لندست 8 آزمون و مناسب­ترین روش تهیه نقشة کاربری/پوشش اراضی معرفی شد.

کلیدواژه ها:

سنجش از دور, کاربری/ پوشش اراضی, شبکه عصبی مصنوعی, ماشین بردار پشتیبان, شیءگرا, استان اردبیل

کد مقاله/لینک ثابت به این مقاله

کد یکتای اختصاصی (COI) این مقاله در پایگاه سیویلیکا JR_GIRS-6-3_001 میباشد و برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/1166199/

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
اسلمی، فرنوش و قربانی، اردوان و سبحانی، بهروز و پناهنده، محسن،1394،مقایسة روش های شبکه عصبی مصنوعی، ماشین بردار پشتیبان و شیءگرا در استخراج کاربری و پوشش اراضی از تصاویر لندست 8،https://civilica.com/doc/1166199

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1394، اسلمی، فرنوش؛ اردوان قربانی و بهروز سبحانی و محسن پناهنده)
برای بار دوم به بعد: (1394، اسلمی؛ قربانی و سبحانی و پناهنده)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مدیریت اطلاعات پژوهشی

صدور گواهی نمایه سازی | گزارش اشکال مقاله | من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز: دانشگاه دولتی
تعداد مقالات: 12,236
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

پشتیبانی