A Proposed Ensemble Classifier (EC) Machine Learning Algorithm for Evaluation of Plausible Drivers of Metastatic Breast Cancer

سال انتشار: 1398
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 374

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

IBIS09_014

تاریخ نمایه سازی: 19 اسفند 1399

چکیده مقاله:

Today, there is a lot of markers on the prognosis and diagnosis of complex diseases such as cancer. However, our understanding of the drivers that influence cancer aggression is limited. Meanwhile, the exploration of the targeted gene panel for cancer development, with the help and power of machine learning methods, has ushered in a new era of high-throughput data analysis, where it is difficult for human physicians and biologists to make decisions on the basis of clinical practice or laboratory evidence. Present study aims to focus on the synergistic combination of computational tools as an integrative approach to design plausible driver genes for metastatic breast cancer (MBCA). It can open new horizons for assisting precision oncologists to screen patients at risk and eliminate the need for whole-genome/exome sequencing.

نویسندگان

Leila Mirsadeghi

Department of Biology, Faculty of Science, Payame Noor University, Tehran, IranLaboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, I

Kaveh Kavousi

Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran

Reza Haji Hosseini

Department of Biology, Faculty of Science, Payame Noor University, Tehran, Iran

Ali Mohammad Banaei Moghaddam

Laboratory of Genomics and Epigenomics (LGE), Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran