Prediction of Temperature Field and Pollutants in a Turbulent, Non-Premixed CO/H2/N2 Flame

سال انتشار: 1389
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,014

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ISME18_064

تاریخ نمایه سازی: 1 تیر 1389

چکیده مقاله:

The applicability of the laminar Flamelet concept for the prediction of temperature and mass fractions of important pollutant species such as NO and CO in a turbulent CO/H2/N2 jet flame has been studied, using Artificial Neural Networks (ANN). In the first step, by means of the solution of counter-flow diffusion flames, OPPDIF, temperature and species concentrations have been calculated in different flame strain rates. The results of this step are related to the mixture fraction and scalar dissipation rate. Then, turbulent fluctuations were applied to the calculated profiles through numerical integration with presumed shape probability density functions. Ultimately, a Flamelet library was created. In order to interpolate in this library, two artificial neural networks were built for the mean species mass fractions, and temperature, respectively. The simulations done in this research revealed a drastic decrease in computational time of ANN approach in comparison with the traditional Flamelet library computations. Aclose relationship between the accuracy of NO and temperature predictions was observed, as the thermal NOx plays an important role in the total NOx pollution in this flame.

نویسندگان

M Ayoobi

M.Sc. Student, Isfahan University of Technology

M.D. Emami

Assistant Professor, Isfahan University of Technology

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Veynante D, Vervisch L. Turbulent Combustion Modeling. Prog Energy Combust ...
  • Pope SB. PDF Methods for Turbulent Reactive Flows. Prog Energy ...
  • Bilger RW. Conditional Moment Closure for turbulent reacting flows. Phys ...
  • Peters N. Laminar Diffusion Flamelet Models in Non-premixed Turbulent Combustion. ...
  • Peters N. Turbulent Combustion. Cambridge: Cambridge University Press; 2000). ...
  • Swaminathan N, Bilger RW. Assessment of Combustion Submodels for Turbulent ...
  • Bollas GM, Papadokons tadakis S, Michalopoulos J, Arampatzis G, Lappas ...
  • Shaikh A, AI-Dahhan M. Development of an artificial neural network ...
  • Smith GP, Golden DM, Frenklach M, Moriarty NW, Eiteneer B, ...
  • Bilger RW, Starner SH, Kee RJ. On Reduced Mechanisms for ...
  • Liu F, Guo H, Smallwood GJ, Gilder OL, Matovic MD. ...
  • M.D. Emami and A Kamranian, Application of the Hybrid Method ...
  • M.D. Emami S.Ziaei-Rad and H. Afshin, Application of the Multi-mixture ...
  • Barlow RS, Fiechtner GJ, Carter CD, Flury M. S andia/ETH ...
  • Barlow RS, Fiechtner GJ, Carter CD, Chen J-Y. Experiments _ ...
  • Dally BB, Fletcher DF and Masri AR. Flow and Mixing ...
  • Combustion, San Francisco, California 1995; 286-297. [8] Sanders JPH, Chen ...
  • M.A. Alim, W. Malalasekera, Transport and Chemical Kinetics of H2/N2 ...
  • Hagan MT, Demuth HB, Beale MH. Neural Network Design. Boston: ...
  • Rumelhart DE, Hinton GE, Williams RJ. Learning Internal representations by ...
  • Microstructure of Cognition. MA: The MIT Press, foundations Rumelhart DE ...
  • Baines GH, Hayes RL, Stabell JL. Predicting Boiler Emissions with ...
  • Reilly PO, Thompson S. A Neural Network Ai. fuel Ratio ...
  • Zhou M, Doanld Gauthier JE. A new method for adiabatic ...
  • Lutz AE, Kee RJ, Grear JF. OPPDIF: A FORTRAN program ...
  • Peters N. Laminar Flamelet Concepts in Turbulent Combustion, It 21" ...
  • Cook AW, Riley JJ, Kosaly G. A Laminar Flamelet Approach ...
  • نمایش کامل مراجع