Intrusion Detection and Intrusion Prevention Using Machine Learning and Genetic Algorithms
سال انتشار: 1397
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 488
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICIRES02_008
تاریخ نمایه سازی: 27 اردیبهشت 1398
چکیده مقاله:
The purpose of the system is to detect infiltration,detect and identify attacks, and diagnose securityfailures in a computer system or networks and notifysecurity managers. The obstacles and problems involvedin designing an effective intrusion detection system canbe a large amount of data on computer network traffic,low detection rates and the production of wrong alerts,which create highly pessimistic systems and ultimatelydisregard for professionals. The system will be warned.In this paper, using machine learning techniques, theselection of the feature based on the genetic algorithm toselect the most effective features and the decision treewas used to teach the model. For testing, 10% of thestandard KDD Cup 99 dataset was used and MATLABsoftware was used. The results indicate that theproposed method of the 22 attack classes would detect21 attack classes and reach an accurate 97% detectionrate.
کلیدواژه ها:
نویسندگان
Hesam Rafei
Department of Computer and Information Technology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran