Prediction of wax precipitation by intelligent methods and comparison with Multisolid model in crude oil systems

سال انتشار: 1388
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,796

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICHEC06_553

تاریخ نمایه سازی: 1 مهر 1388

چکیده مقاله:

This paper introduces a new implementation of the neural network and genetic programming neural network technology in petroleum engineering. An intelligent framework is developed for calculating the amount of wax precipitation in petroleum mixtures over a wide temperature range. Theoretical results and practical experience indicate that feed-forward network can approximate a wide class of function relationships very well. In this work, a conventional feed-forward multilayer Neural Network and Genetic Programming Neural Network (GPNN) approach have been proposed to predict the amount of wax precipitation. The introduced model can predict wax precipitation through neural network and genetic algorithmic techniques. The accuracy of the method is evaluated by predicting the amount of wax precipitation of various reservoir fluids not used in the development of the models. Furthermore, the performance of the model is compared with the performance of multi-solid model for wax precipitation prediction and experimental data. Results of this comparison show that the proposed method is superior, in both accuracy and generality, over the other models.

نویسندگان

Abbas Khaksar Manshad

Department of Chemical Engineering, School of Engineering, Persian Gulf University, Boushehr ۷۵۱۶۸, Iran

Siavash Ashoori

Department of Chemical Engineering, Petroleum University of Technology, Ahwaz, Iran

Mojdeh Khaksar Manshad

Department of Computer Engineering, Islamic Azad University, Qazvin, Iran

Mohsen Edalat

Department of Chemical Engineering, University of Tehran, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Koza, J.R., Rice, J.P. 1991. Genetic Generation of Both the ...
  • Mitchell, M., 1996. An Introduction to Genetic Algorithms. MIT Press, ...
  • Moore, J.H., 2003. Cross validation consistency for the assessmen of ...
  • Moore, J.H., Parker, J.S., Olsen, N.J., Aune, T., 2002. Symbolic ...
  • Ritchie, M.D., Hahn, L.W., Roodi, N., Bailey, L.R., Dupont, W.D., ...
  • Al-Fattah, M., 2007. Artificial intelligence technology predicts relative permeability of ...
  • Akbari, M., Jalali, F., 2007. Dew point pressure estimation of ...
  • Ritchie, M. D., Motsinger, A. A., Bush, W. S., 2007. ...
  • Saemi, M., Ahmadi, M., Yazdian, A., 2007. Design of neural ...
  • Won. K. W., 1986. Th ermodynamic for solid solution -liquid-vapor ...
  • Won. K. W., 1989. Th ermodynamic calculation of cloud point ...
  • Pedersen, K. S., Skovborg, P., 1991. Wax precipitation from north ...
  • lira-galena, C., firoozabadi, A., prausnitz, M., 1996. Thermodyn amics of ...
  • Hansen, J. H., fredenslund, A., Pedersen, K. S., 1937. A ...
  • Pan, H., Firoozabadi, A., Fotland, P., 1996. Pressure and composition ...
  • Pedersen, K. S., 1996. Prediction of cloud point temperatures and ...
  • Zadeh, L.A., 1973. Outline of a new approach to the ...
  • Ritchie, M.D., White, B.C., Parker, J.S., Hahn, L.W., Moore, J.H., ...
  • The 6th lhterhatiohal Chehical Ehgiheering Congress & Exhibition (ICHEc 2009) ...
  • Boozarjomehry, R.B., 2005. Characterization of basic properties for pure substances ...
  • Yang, S.Y., 2003. Selection of optimal material and operating conditions ...
  • _ _ _ _ _ .Neural network prediction [our work] ...
  • _ Experimental data (oil 15) (Pedersen et al., 1!9! _ ...
  • _ Experimental data (oil 12) (Pedersen et al. _ _ ...
  • The 6th lhterhatiohal Chehical Ehgiheering Congress & Exhibition (ICHEc 2009) ...
  • نمایش کامل مراجع