An Intelligent Approach to Estimate Pressure-Volume-Temperature Properties in the System of Methane- Tetrafluoromethane: Densities and Compressibility Factors
محل انتشار: ششمین کنگره بین المللی مهندسی شیمی
سال انتشار: 1388
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,139
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICHEC06_104
تاریخ نمایه سازی: 1 مهر 1388
چکیده مقاله:
In this study, the ability of Artificial Neural Network or ANN based on back-propagation approach for predicting the densities and compressibility factor of gaseous binary mixtures of CH4-CF4 has been investigated. Some experimental data (1507 data points) of gas densities for pure CH4, pure CF4, and three mixtures (0.25, 0.50, and 0.75 mole fraction of methane) are used to find optimal network, for which a density range from 0.75 to 12.5 mole/lit were covered. Finally, a network included 10-5-1 neurons in its layer is selected. By using this number of neurons, admissible absolute average deviations (about 0.112593% and 0.121046% for training and testing steps, respectively) are provided. Then, a comparison of compressibility factors for a mixture containing 50% CH4 shows an acceptable deviation, about 0.023604%. These results show that there is an excellent agreement between experimental data and ANN predictions.
کلیدواژه ها:
نویسندگان
M . R Nikkholgh
Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran.
A . R Moghadassi
Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran.
F Parvizian
Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :